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1 Introduction 
 

This document presents a review of evidence commissioned by the Education 
Endowment Foundation to inform the guidance document Improving Mathematics in 
Key Stages Two and Three (Education Endowment Foundation, 2017). 
 

The review draws on a substantial parallel study by the same research team, funded 
by the Nuffield Foundation, which focuses on the problems faced by low attaining 
Key Stage three students in developing their maths understanding, and the 
effectiveness of teaching approaches in overcoming these difficulties. This project, 
Low attainment in mathematics: an investigation focusing on Year 9 pupils includes a 
systematic review of the evidence relating to teaching of low-attaining secondary 
students, which the current report builds upon in the wider context of teaching maths 
in Key Stages two and three. 
 

The Education Endowment Foundation and the Nuffield Foundation are both 

committed to finding ways of synthesising high quality research about effective 

teaching and learning, and providing this to practitioners in accessible forms. 
 

There have been a number of recent narrative and systematic reviews of 
mathematics education examining how students learn and the implications for 
teaching (e.g., Anthony & Walshaw, 2009; Conway, 2005; Kilpatrick et al., 2001; 
Nunes et al., 2010). Although this review builds on these studies, this review has a 
different purpose and takes a different methodological approach to reviewing and 
synthesising the literature. 
 

The purpose of the review is to synthesise the best available international evidence 
regarding teaching mathematics to children between the ages of 9 and 14 and to 
address the question: what is the evidence regarding the effectiveness of different 
strategies for teaching mathematics? 
 

In addition to this broad research question, we were asked to address a set of more 
detailed topics developed by a group of teachers and related to aspects of pupil 
learning, pedagogy, the use of resources, the teaching of specific mathematical 
content, and pupil attitudes and motivation. Using these topics, we derived the 24 
research questions that we address in this review. 
 

Our aim was to focus primarily on robust, causal evidence of impact, using 
experimental and quasi-experimental designs. However, there are a very large 
number of experimental studies relevant to this research question. Hence, rather 
than identifying and synthesising all these primary studies, we focused instead on 
working with existing meta-analyses and systematic reviews. This approach has the 
advantage that we can draw on the findings of a very extensive set of original studies 
that have already been screened for research quality and undergone some 
synthesis. 
 

Using a systematic literature search strategy, we identified 66 relevant meta-
analyses, which synthesise the findings of more than 3000 original studies. However, 
whilst this corpus of literature is very extensive, there were nevertheless significant 
gaps. For example, the evidence concerning the teaching of specific mathematical 
content and topics was limited. In order to address gaps in the meta-analytic 
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literature, we supplemented our main dataset with 22 systematic reviews identified 
through the same systematic search strategy. 
 

The structure of this document 
 

We begin with an executive summary with our headline findings. Then, in order to 
contextualise the review of evidence, we outline our theoretical understanding of how 
children learn and develop mathematically in Section 3: the development of 
mathematics competency. In this section, we summarise a range of background 
literature that we used to inform our analysis and synthesis of the literature. 
 

In Sections 4 and 5, we provide a guide for the reader and describe our method. 
 

In the subsequent sections, we present the findings relating to the 24 detailed 
research questions. These are organised using a modular approach (as described 
in Section 4). 
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2 Executive Summary 
 

Feedback and formative assessment (Section 6.1) 
 

What is the effect of giving feedback to learners in mathematics? 
 

The general findings in the EEF toolkit on feedback appear to apply to mathematics: 

research tends to show that feedback has a large effect on learning, but the range 

of effects is wide and a proportion of studies show negative effects. The effect of 

formative assessment is more modest, but is more effective when teachers receive 

professional development or feedback is delivered through computer-assisted 

instruction. In mathematics, it may be particularly important to focus on the aspects 

of formative assessment that involve feedback. Feedback should be used sparingly 

and predominantly reserved for more complex tasks, where it may support learnersô 

perseverance. The well-established literature on misconceptions and learnersô 

understandings in mathematics provides a fruitful framework to guide assessment 

and feedback in mathematics. (See 6.8 below.) 
 

Strength of evidence: HIGH 
 

Collaborative learning (Section 6.2) 
 

What is the evidence regarding the effect of using collaborative learning 

approaches in the teaching and learning of maths? 
 

Collaborative Learning (CL) has a positive effect on attainment and attitude for all 

students, although the effects are larger at secondary. The largest and most 

consistent gains have been shown by replicable structured programmes lasting 12 

weeks or more. Unfortunately, these programmes are designed for the US 

educational system, and translating the programmes (and the effects) for the English 

educational system is not straightforward. The evidence suggests that students 

need to be taught how to collaborate, and that this may take time and involve 

changes to the classroom culture. Some English-based guidance is available. 
 

Strength of evidence: HIGH 
 

Discussion (Section 6.3) 
 

What is known about the effective use of discussion in teaching and 

learning mathematics? 
 

Discussion is a key element of mathematics teaching and learning. However, there is 

limited evidence concerning the effectiveness of different approaches to improving 

the quality of discussion in mathematics classrooms. The available evidence 

suggests that teachers need to structure and orchestrate discussion, scaffold 

learnersô contributions, and develop their own listening skills. Wait time, used 

appropriately, is an effective way of increasing the quality of learnersô talk. Teachers 

need to emphasise learnersô explanations in discussion and support the 

development of their learnersô listening skills. 
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Strength of evidence: LOW 
 

Explicit teaching and direct instruction (Section 6.4) 
 

What is the evidence regarding explicit teaching as a way of improving pupilsô 

learning of mathematics? 
 

Explicit instruction encompasses a wide array of teacher-led strategies, including 

direct instruction (DI). There is evidence that structured teacher-led approaches can 

raise mathematics attainment by a sizeable amount. DI may be particularly 

beneficial for students with learning difficulties in mathematics. But the picture is 

complicated, and not all of these interventions are effective. Furthermore, these 

structured DI programmes are designed for the US and may not translate easily to 

the English context. Whatever the benefits of explicit instruction, it is unlikely that 

explicit instruction is effective for all students across all mathematics topics at all 

times. How the teacher uses explicit instruction is critical, and although careful use is 

likely to be beneficial, research does not tell us how to balance explicit instruction 

with other more implicit teaching strategies and independent work by students. 
 

Strength of evidence: MEDIUM 
 

Mastery learning (Section 6.5) 
 

What is the evidence regarding mastery learning in mathematics? 
 

Evidence from US studies in the 1980s generally shows mastery approaches to be 

effective, particularly for mathematics attainment. However, very small effects were 

obtained when excluding all but the most rigorous studies carried out over longer 

time periods. Effects tend to be higher for primary rather than secondary learners 

and when programmes are teacher-paced, rather than student-paced. The US meta-

analyses are focused on two structured mastery programmes, which are somewhat 

different from the kinds of mastery approaches currently being promoted in England. 

Only limited evidence is available on the latter, which suggests that, at best, the 

effects are small. There is a need for more research here. 
 

Strength of evidence: MEDIUM 
 

Problem solving (Section 6.6) 
 

What is the evidence regarding problem solving, inquiry-based learning and related 

approaches in mathematics? 
 

Inquiry-based learning (IBL) and similar approaches involve posing mathematical 

problems for learners to solve without teaching a solution method beforehand. 

Guided discovery can be more enjoyable and memorable than merely being told, 

and IBL has the potential to enable learners to develop generic mathematical skills, 

which are important for life and the workplace. However, mathematical exploration 

can exert a heavy cognitive load, which may interfere with efficient learning. 

Teachers need to scaffold learning and employ other approaches alongside IBL, 

including explicit teaching. Problem solving should be an integral part of the 
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mathematics curriculum, and is appropriate for learners at all levels of attainment. 

Teachers need to choose problems carefully, and, in addition to more routine tasks, 

include problems for which learners do not have well-rehearsed, ready-made 

methods. Learners benefit from using and comparing different problem-solving 

strategies and methods and from being taught how to use visual representations 

when problem solving. Teachers should encourage learners to use worked examples 

to compare and analyse different approaches, and draw learnersô attention to the 

underlying mathematical structure. Learners should be helped to monitor, reflect on 

and discuss the experience of solving the problem, so that solving the problem does 

not become an end in itself. At primary school level, it appears to be more important 

to focus on making sense of representing the problem, rather than on necessarily 

solving it. 
 

Strength of evidence (IBL): LOW 
 

Strength of evidence (use of problem solving): MEDIUM 
 

Peer and cross-age tutoring (Section 6.7) 
 

What are the effects of using peer and cross-age tutoring on the learning of 

mathematics? 
 

Peer and cross-age tutoring appear to be beneficial for tutors, tutees and teachers and 

involve little monetary cost, potentially freeing up the teacher to implement other 

interventions. Cross-age tutoring returns higher effects, but is based on more limited 

evidence. Peer-tutoring effects are variable, but are not negative. Caution should be 

taken when implementing tutoring approaches with learners with learning difficulties. 
 

Strength of evidence: MEDIUM 
 

Misconceptions (Section 6.8) 
 

What is the evidence regarding misconceptions in mathematics? 
 

Studentsô misconceptions arise naturally over time as a result of their attempts to 

make sense of their growing mathematical experience. Generally, misconceptions 

are the result of over-generalisation from within a restricted range of situations. 

Misconceptions should be viewed positively as evidence of studentsô sense 

making. Rather than confronting misconceptions in an attempt to expunge them, 

exploration and discussion can reveal to students the limits of applicability 

associated with the misconception, leading to more powerful and extendable 

conceptions that will aid studentsô subsequent mathematical development. 
 

Strength of evidence: MEDIUM 
 

Thinking skills, metacognition and self-regulation (Section 6.9) 
 

To what extent does teaching thinking skills, metacognition and/or self-

regulation improve mathematics learning? 
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Teaching thinking skills, metacognition and self-regulation can be effective in 

mathematics. However, there is a great deal of variation across studies. 

Implementing these approaches is not straightforward. The development of thinking 

skills, metacognition and self-regulation takes time (more so than other concepts), 

the duration of the intervention matters, and the role of the teacher is important. One 

thinking skills programme developed in England, Cognitive Acceleration in 

Mathematics Education (CAME), appears to be particularly promising. Strategies 

that encourage self-explanation and elaboration appear to be beneficial. There is 

some evidence to suggest that, in primary, focusing on cognitive strategies may be 

more effective, whereas, in secondary, focusing on learner motivation may be more 

important. Working memory and other aspects of executive function are associated 

with mathematical attainment, although there is no clear evidence for a causal 

relationship. A great deal of research has focused on ways of improving working 

memory. However, whilst working memory training improves performance on tests of 

working memory, it does not have an effect on mathematical attainment. 
 

Strength of evidence (Thinking skills, metacognition and self-regulation): MEDIUM 
 

Strength of evidence (Working memory training): HIGH 
 

Calculators (Section 7.1) 
 

What are the effects of using calculators to teach mathematics? 
 

Calculator use does not in general hinder studentsô skills in arithmetic. When 

calculators are used as an integral part of testing and teaching, their use appears to 

have a positive effect on studentsô calculation skills. Calculator use has a small 

positive impact on problem solving. The evidence suggests that primary students 

should not use calculators every day, but secondary students should have more 

frequent unrestricted access to calculators. As with any strategy, it matters how 

teachers and students use calculators. When integrated into the teaching of mental 

and other calculation approaches, calculators can be very effective for developing 

non-calculator computation skills; students become better at arithmetic in general 

and are likely to self-regulate their use of calculators, consequently making less (but 

better) use of them. 
 

Strength of evidence: HIGH 
 

Technology: technological tools and computer-assisted instruction (Section 

7.2) 
 

What is the evidence regarding the use of technology in the teaching and learning of 

maths? 
 

Technology provides powerful tools for representing and teaching mathematical 

ideas. However, as with tasks and textbooks, how teachers use technology with 

learners is critical. There is an extensive research base examining the use of 

computer-assisted instruction (CAI), indicating that CAI does not have a negative 

effect on learning. However, the research is almost exclusively focused on systems 
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designed for use in the US in the past, some of which are now obsolete. 

More research is needed to evaluate the use of CAI in the English context. 
 

Strength of evidence (Tools): LOW 
 

Strength of evidence (CAI): MEDIUM 
 

Concrete manipulatives and other representations (Section 7.3) 
 

What are the effects of using concrete manipulatives and other representations 

to teach mathematics? 
 

Concrete manipulatives can be a powerful way of enabling learners to engage with 

mathematical ideas, provided that teachers ensure that learners understand the 

links between the manipulatives and the mathematical ideas they represent. Whilst 

learners need extended periods of time to develop their understanding by using 

manipulatives, using manipulatives for too long can hinder learnersô mathematical 

development. Teachers need to help learners through discussion and explicit 

teaching to develop more abstract, diagrammatic representations. Number lines are 

a particularly valuable representational tool for teaching number, calculation and 

multiplicative reasoning across the age range. Whilst in general the use of multiple 

representations appears to have a positive impact on attainment, the evidence base 

concerning specific approaches to teaching and sequencing representations is 

limited. Comparison and discussion of different representations can help learners 

develop conceptual understanding. However, using multiple representations can 

exert a heavy cognitive load, which may hinder learning. More research is needed to 

inform teachersô choices about which, and how many, representations to use and 

when. 
 

Strength of evidence (Manipulatives): HIGH 
 

Strength of evidence (Representations): MEDIUM 
 

Tasks (Section 7.4) 
 

What is the evidence regarding the effectiveness of mathematics tasks? 
 

The current state of research on mathematics tasks is more directly applicable to 

curriculum designers than to schools. Tasks frame, but do not determine, the 

mathematics that students will engage in, and should be selected to suit the 

desired learning intentions. However, as with textbooks, how teachers use tasks 

with students is more important in determining their effectiveness. More research is 

needed on how to communicate the critical pedagogic features of tasks so as to 

enable teachers to make best use of them in the classroom. 
 

Strength of evidence: LOW 
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Textbooks (Section 7.5) 
 

What is the evidence regarding the effectiveness of textbooks? 
 

The effect on student mathematical attainment of using one textbook scheme rather 

than another is very small, although the choice of a textbook will have an impact on 

what, when and how mathematics is taught. However, in terms of increasing 

mathematical attainment, it is more important to focus on professional development 

and instructional differences rather than on curriculum differences. The organisation of 

the mathematics classroom and how textbooks can enable teachers to develop 

studentsô understanding of, engagement in and motivation for mathematics is of 

greater significance than the choice of one particular textbook rather than another. 
 

Strength of evidence: HIGH 
 

Algebra (Section 8.2) 
 

What is the evidence regarding the effectiveness of teaching approaches to 

improve learnersô understanding of algebra? 
 

Learners generally find algebra difficult because of its abstract and symbolic nature 

and because of the underlying structural features, which are difficult to operate with. 

This is especially the case if learners experience the subject as a collection of 

arbitrary rules and procedures, which they then misremember or misapply. Learners 

benefit when attention is given both to procedural and to conceptual teaching 

approaches, through both explicit teaching and opportunities for problem-based 

learning. It is particularly helpful to focus on the structure of algebraic 

representations and, when solving problems, to assist students in choosing 

deliberately from alternative algebraic strategies. In particular, worked examples can 

help learners to appreciate algebraic reasoning and different solution approaches. 
 

Strength of evidence: MEDIUM 
 

Number and calculation (Section 8.3) 
 

What is the evidence regarding the effectiveness of teaching approaches to 

improve learnersô understanding of number and calculation? 
 

Number and numeric relations are central to mathematics. Teaching should enable 

learners to develop a range of mental and other calculation methods. Quick and 

efficient retrieval of number facts is important to future success in mathematics. 

Fluent recall of procedures is important, but teaching should also help learners 

understand how the procedures work and when they are useful. Direct, or explicit, 

teaching can help learners struggling with number and calculation. Learners should 

be taught that fractions and decimals are numbers and that they extend the number 

system beyond whole numbers. Number lines should be used as a central 

representational tool in teaching number, calculation and multiplicative reasoning 

across Key Stages 2 and 3. 
 

Strength of evidence: MEDIUM 
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Geometry (Section 8.4) 
 

What is the evidence regarding the effectiveness of teaching approaches to 

improve learnersô understanding of geometry and measures? 
 

There are few studies that examine the effects of teaching interventions for and 

pedagogic approaches to the teaching of geometry. However, the research evidence 

suggests that representations and manipulatives play an important role in the 

learning of geometry. Teaching should focus on conceptual as well as procedural 

knowledge of measurement. Learners experience particular difficulties with area, and 

need to understand the multiplicative relations underlying area. 
 

Strength of evidence: LOW 
 

Probability and Statistics (Section 8.5) 
 

What is the evidence regarding the effectiveness of teaching approaches to 

improve learnersô understanding of probability and statistics? 
 

There are very few studies that examine the effects of teaching interventions for and 

pedagogic approaches to the teaching of probability and statistics. However, there 

is research evidence on the difficulties that learners experience and the common 

misconceptions that they encounter, as well as the ways in which they learn more 

generally. This evidence suggests some pedagogic principles for the teaching of 

statistics. 
 

Strength of evidence: LOW 
 

Grouping by attainment or óabilityô (Section 9.1) 
 

What is the evidence regarding óability groupingô on the teaching and learning of 

maths? 
 

Setting or streaming students into different classes for mathematics based on their 

prior attainment appears to have an overall neutral or slightly negative effect on their 

future attainment, although higher attainers may benefit slightly. The evidence 

suggests no difference for mathematics in comparison to other subjects. The use of 

within-class grouping at primary may have a positive effect, particularly for 

mathematics, but if used then setting needs to be flexible, with regular opportunities 

for group reassignment. 
 

Strength of evidence: MEDIUM 
 

Homework (Section 9.2) 
 

What is the evidence regarding the effective use of homework in the teaching and 

learning of mathematics? 
 

The effect of homework appears to be low at the primary level and stronger at the 

secondary level, although the evidence base is weak. It seems to matter more that 

homework encourages students to actively engage in learning rather than simply 
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learning by rote or finishing off classwork. In addition, the studentôs effort appears to 

be more important than the time spent or the quantity of work done. This would 

suggest that the teacher should aim to set homework that students find engaging 

and that encourages metacognitive activity. For primary students, homework seems 

not to be associated with improvements in attainment, but there could be other 

reasons for setting homework in primary, such as developing study skills or student 

engagement. Homework is more important for attainment as students get older. As 

with almost any intervention, teachers make a huge difference. It is likely that student 

effort will increase if teachers value studentsô homework and discuss it in class. 

However, it is not clear that spending an excessive amount of time marking 

homework is an effective use of teacher time. 
 

Strength of evidence: LOW 
 

Parental engagement (Section 9.3) 
 

What is the evidence regarding parental engagement and learning mathematics? 
 

The well-established association between parental involvement and a childôs 

academic success does not appear to apply to mathematics, and there is limited 

evidence on how parental involvement in mathematics might be made more 

effective. Interventions aimed at improving parental involvement in homework do not 

appear to raise attainment in mathematics, and may have a negative effect in 

secondary. However, there may be other reasons for encouraging parental 

involvement. Correlational studies suggest that parental involvement aimed at 

increasing academic socialization, or helping students see the value of education, 

may have a positive impact on achievement at secondary. 
 

Strength of evidence: LOW 
 

Attitudes and Dispositions (Section 10) 
 

How can learnersô attitudes and dispositions towards mathematics be improved 

and maths anxiety reduced? 
 

Positive attitudes and dispositions are important to the successful learning of 

mathematics. However, many learners are not confident in mathematics. There is 

limited evidence on the efficacy of approaches that might improve learnersô 

attitudes to mathematics or prevent or reduce the more severe problems of maths 

anxiety. Encouraging a growth mindset rather than a fixed mindset is unlikely to 

have a negative impact on learning and may have a small positive impact. 
 

Strength of evidence: LOW 
 

Transition from Primary to Secondary (Section 11) 
 

What is the evidence regarding how teaching can support learners in 

mathematics across the transition between Key Stage 2 and Key Stage 3? 
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The evidence indicates a large dip in mathematical attainment as children move from 

primary to secondary school in England, which is accompanied by a dip in learner 

attitudes. There is very little evidence concerning the effectiveness of particular 

interventions that specifically address these dips. However, research does indicate that 

initiatives focused on developing shared understandings of curriculum, teaching and 

learning are important. Both primary and secondary teachers are likely to be more 

effective if they are familiar with the mathematics curriculum and teaching methods 

outside of their age phase. Secondary teachers need to revisit key aspects of the 

primary mathematics curriculum, but in ways that are engaging and relevant and not 

simply repetitive. Teachersô beliefs about their ability to teach appear to be particularly 

crucial for lower-attaining students in Key Stage 3 mathematics. 
 

Strength of evidence: LOW 
 

Teacher Knowledge and Professional Development (Section 12) 
 

What is the evidence regarding the impact of teachers and their 

effective professional development in mathematics? 
 

The evidence shows that the quality of teaching makes a difference to student 

outcomes. The quality of teaching, or instructional guidance, is important to the 

efficacy of almost every strategy that we have examined. The evidence also 

indicates that, in mathematics, teacher knowledge is a key factor in the quality of 

teaching. Teacher knowledge, more particularly pedagogic content knowledge 

(PCK), is crucial in realising the potential of mathematics curriculum resources and 

interventions to raise attainment. Professional development (PD) is key to raising the 

quality of teaching and teacher knowledge. However, evidence concerning the 

specific effects of PD is limited. This evidence suggests that extended PD is more 

likely to be effective than short courses. 
 

Strength of evidence (Teacher knowledge): LOW 
 

Strength of evidence (Teacher PD): LOW 
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3 Overview of the development of mathematics competency 
 

In this section, we describe in broad terms how learners typically develop 
competency in mathematics. We conceptualise ótypicalô as the common range of 
developmental trajectories demonstrated by the majority of learners in mainstream 
primary and secondary education in England. We note that there is a wide variation 
in learnersô mathematical development and that it is helpful to conceive of this 
variation as a continuum (Brown, Askew et al., 2008). However, whilst the range in 
development and attainment is wide, many children experience similar difficulties. 
 

3.1 Knowing and learning mathematics 
 

Successful learning of mathematics requires several elements to be in place, 
which together enable the learner to make progress, navigate difficulties and 
develop mathematics competency. 
 

3.1.1 Facts, procedures and concepts 
 

It is helpful to think of mathematical knowledge as consisting of factual, procedural 
and conceptual knowledge, which are strongly inter-related (Donovan & Bransford, 
2005; Kilpatrick et al., 2001). To become mathematically competent, learners need 
to develop a rich foundation of factual and procedural knowledge. However, while 
knowing how to carry out a procedure fluently is important, it is not sufficient; 
learners also need to identify when the procedure is appropriate, understand why it 
works and know how to interpret the result (Hart et al., 1981). This requires 

conceptual knowledge,1 which involves understanding the connections and 

relationships between mathematical facts, procedures and concepts; for example, 
understanding addition and subtraction as inverse operations (Nunes et al., 2009). 
Additionally, learners need to organise their knowledge of facts, procedures and 
concepts in ways that enable them to retrieve and apply this knowledge, although we 

emphasise that this organisation is largely unconscious.2 Nunes et al. (2012) refer to 
the use of conceptual knowledge as mathematical reasoning, and have shown this to 
be an important predictor of future mathematical attainment. Similarly, Dowker  
(2014) has demonstrated a strong relationship between calculational proficiency and 

the extent to which children use derived fact strategies based on conceptual links (e.g., 

if 67 ī 45 = 22, then 68 ī 45 must be 23), whilst Gray & Tall (1994) found that higher-

attaining students used strategies such as these as part of their progression towards 

competent calculation, whereas lower-attaining students did not. 
 

The relations between how factual, procedural and conceptual knowledge are learnt, 
however, are contested. For example, in devising curriculum sequences it is often 
assumed that conceptual knowledge should be placed before the associated 
procedural knowledge, so that the concepts can support the procedures (NCTM, 
2014), but there is evidence that procedural knowledge can also support conceptual 
knowledge, and therefore that these kinds of knowledge are mutually interdependent 
(Rittle-Johnson, Schneider, & Star, 2015). 
 

3.1.2 Generic mathematical skills 
 

To solve problems, learners need to develop generic mathematical strategies, 

sometimes known as óprocessesô or ógeneric mathematical skillsô (HMI, 1985), or as 
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óstrategic competenceô, which Kilpatrick et al. (2001) define as the ñability to 
formulate, represent, and solve mathematical problemsò (p. 5). These include actions 
such as specialising and generalising, and conjecturing and proving (Mason & 
Johnston-Wilder, 2006, pp. 74-77). The development of these strategies appears to 
be supported by teachers highlighting when they or their learners spontaneously use 
them; for example, by naming them and asking for other examples of their use 
(Mason, 2008). 
 

3.1.3 Building on learnersô existing knowledge 
 

Learners come to mathematics classrooms with existing mathematical knowledge 
and preconceptions, much of which is useful and at least partially effective. In order 
to develop mathematics competence, teaching needs to enable learners to build 
upon, transform and restructure their existing knowledge (Donovan & Bransford, 
2005; see also Bransford et al., 2000). This is particularly important where such 
preconceptions, or ómetbeforesô (McGowen & Tall, 2010), are likely to interfere with 
learning (see Section 4.1 below). 
 

3.1.4 Metacognition 
 

Learning and doing mathematics involves more than knowledge and cognitive 
activity. Fostering metacognition appears to be important to the development of 
mathematics competence (Donovan & Bransford, 2005). Metacognition is defined in 
different ways by different researchers (Gascoine et al., 2017), some focusing on 
ñthinking about thinkingò (Adey & Shayer, 1994) and others on ñlearning to learnò 
(see discussion in Higgins et al., 2005). Donovan & Bransford (2005) define 
metacognition as ñthe phenomenon of ongoing sense making, reflection, and 
explanation to oneself and othersò (p. 218) and equate it to Kilpatrick et al.ôs (2001) 
ñadaptive reasoning [which is] é the capacity to think logically about the 
relationships among concepts and situations and to justify and ultimately prove the 
correctness of a mathematical procedure or assertion é [which] includes reasoning 
based on pattern, analogy or metaphorò (p. 170). Mathematics-specific 
metacognitive activity is distinct from generic metacognitive approaches. 
Metacognition related to mathematics includes a generic component (logical 
thinking, including induction, deduction, generalisation, specialisation, etc.) as well 
as a mathematics-specific component (e.g., identifying relationships between 
variables and expressing them in tables, graphs and symbols). Mathematical 
discussion and dialogue can support metacognitive activity (Donovan & Bransford, 

2005),3 and mathematical discussion is more than just talk. Learners benefit from 

being taught how to engage in discussion (Kyriacou & Issitt, 2008), and 
orchestrating productive mathematical discussions requires considerable 
pedagogical skill (Stein et al., 2008). 
 

3.1.5 Productive dispositions and attitudes 
 

Successful learning also depends on learnersô attitudes and productive dispositions 
towards mathematics, as well as contributing to these. Attitudes can be defined as ña 
liking or disliking of mathematics, a tendency to engage in or avoid mathematical 
activities, a belief that one is good or bad at mathematics, and a belief that 
mathematics is useful or uselessò (Neale, cited in Ma & Kishnor, 1997, p.27). The 
relationship between learnersô attitudes and attainment is weak but important, and 
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attitudes become increasingly negative as learners get older (Ma & Kishnor, 1997). 
Attitudes appear to be an important factor in progression and participation in 
mathematics post-16 (Brown, Brown & Bibby, 2008). Some learners experience 
maths anxiety, which can be a very strong hindrance to learning and doing 
mathematics (Dowker et al., 2016; see also Chinn, 2009). Estimates of the extent 
of maths anxiety vary considerably from 2-6% among secondary-school pupils in 
England (Chin, 2009) to 68% of US college students registered on mathematics 
courses (Betz, cited in Dowker et al., 2016). 
 

Kilpatrick et al. (2001) describe productive dispositions as the ñhabitual inclination to 
see mathematics as sensible, useful, and worthwhile, coupled with a belief in 
diligence and oneôs own efficacyò (p. 5) and, thus, as encompassing more than 
attitudes. These include motivation (Middleton & Spanias, 1999), mathematical 
resilience (Johnston-Wilder & Lee, 2010), mathematical self-efficacy, the belief in 
oneôs ability to carry out an activity (Bandura & Schunk, 1981) as well as beliefs 
about the value of mathematics. Productive mathematical activity requires self-
regulation, which, for the purposes of this review, is defined as the dispositions 
required to control oneôs emotions, thinking and behaviour, including oneôs cognitive 
and metacognitive actions (Dignath & Büttner, 2008; see also Gascoine et al., 

2016).4 
 
Emerging research suggests the importance of particular dispositions towards 
mathematics, such as óspontaneous focusingô on number, mathematical relations or 
patterns, although it is not clear how, and to what extent, such dispositions are 
amenable to teaching (e.g., Rathé et al., 2016; Verschaffel, forthcoming). 
 

3.2 Teaching and the process of learning 
 

The teacher, the learner and the mathematics can be conceptualised as a dynamic 
teaching triad (see figure, based on Steinbring, 2011, p. 44), in which the teacher 
mediates between the learner and the mathematics by providing tasks, resources 
and representations to help the learner to make sense of the mathematics. (The 
teaching triad, or ódidactical triangleô was originally suggested by Herbart, see 
Steinbring, 2011.)  
 
 

 

Teacher  
 
 
 
 
 
 
 
 
 

 

Learner Mathematics 
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3.2.1 Manipulatives and representations 
 

Manipulatives (concrete materials) and other representations offer powerful support 
for learners, which may be gradually internalised as mental images take over 
(Streefland, 1991; Carbonneau et al., 2013). However, teachers need to help 
learners to link the materials (and the actions performed on or with them) to the 
mathematics of the situation, to appreciate the limitations of concrete materials, and 
to develop related mathematical images, representations and symbols (Nunes et al., 
2009). In a similar way, diagrams and models that enable learners to build on their 
intuitive understandings of situations can be powerful ways of approaching 
mathematical problems (Nunes et al., 2009). Such models of problems can then 
become more powerful models for understanding and tackling problems with related 
mathematical structure, where it may be less straightforward to use oneôs intuition 
(Streefland, 1991; see also Nunes et al., 2009). But, while time and experience are 
necessary elements for this process to occur, learners cannot be left entirely to 
ódiscoverô these powerful models for themselves; transforming intuitive 
representations in this way requires some explicit teaching and structured discussion 
(e.g., see Askew et al., 1997; Kirschner et al., 2006). 
 

3.2.2 Teaching strategies 
 

It seems likely that the effectiveness of different teaching strategies will depend on 
the particular aspects of mathematical knowledge in question, as well as on learner 
differences. For example, explicit/direct instruction (Gersten, Woodward, & Darch, 
1986) could be particularly effective for teaching particular procedures at particular 
points in learnersô mathematical development, but might be less effective at 
developing reasoning, addressing persistent misconceptions or supporting 
metacognition. In Part 2 of this review of teaching strategies, we examine evidence 
for the relative efficacy of different strategies relating to different aspects of 
mathematics competence. 
 

3.2.3 Insights from cognitive science 
 

There is currently a great deal of interest in how insights from cognitive science (e.g. 
cognitive load theory) may be relevant to mathematics teaching and learning (Alcock 
et al., 2016; Gilmore et al., forthcoming; Wiliam, 2017). Cognitive load theory (CLT) 
originated in the 1980s and addresses the instructional implications of the demands 
that are placed on working memory (Sweller, 1994). All conscious cognitive 
processing takes place in working memory, which is highly limited and able to 
handle only a small number of novel interacting elements at a time ï far fewer than 
the number normally needed for most kinds of sophisticated intellectual activity. In 
contrast, long-term memory allows us to store an almost limitless number of 
schemas, which are cognitive constructs that chunk multiple pieces of information 
into a single element (Paas, Renkl, & Sweller, 2003). When a schema is brought 
from long-term memory into working memory, even though it consists of a complex 
set of interacting elements, it can be processed as just one element. In this way, far 
more sophisticated processing can take place than would be possible with working 
memory alone. Important findings include the expertise reversal effect, in which 
ñinstructional techniques that are effective with novices can lose their effectiveness 
and even become ineffective when used with more experienced learnersò (Paas, 
Renkl, & Sweller, 2003, p. 3), the worked examples effect, in which cognitive load is 
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reduced by studying worked, or partially worked, examples rather than solving the 
equivalent problems, and the generation effect, whereby learners better remember 
ideas that they have at least partially created for themselves (Chen et al., 2015). 
 

3.3 Learning trajectories 
 

While there is considerable variation in what different children learn when, there are 
some overall trends in childrenôs learning, which are captured by the notion of 
learning trajectories (Clements & Sarama, 2004). Learning trajectories (or learning 
progressions) are ñempirically supported hypotheses about the levels or waypoints 
of thinking, knowledge, and skill in using knowledge, that [learners] are likely to go 
through as they learn mathematicsò (Daro et al., 2011, p. 12). 
 

3.3.1 Variation among learners 
 

Learners vary considerably in their levels of attainment and understanding. Children 
differ in how long it takes them to come to know mathematics; e.g. the gap in typical 

attainment5 is equivalent to approximately 7-8 yearsô learning by the time learners 

reach Key Stage 3 (Cockcroft, 1982; see also Brown, Askew et al., 2008; Jerrim & 
Shure, 2016). There can clearly be no expectation that all learners will progress 
through the key waypoints at the same time, or even necessarily in the same order. 
Learning can appear idiosyncratic and non-linear, with learners at any one time 
sometimes more likely to succeed with an apparently more complex idea than with a 
simpler one. Difficult ideas may initially be learned at a superficial level and must 
then be returned to, perhaps many times, before deep conceptual understanding 
develops and is retained (Denvir & Brown, 1986; Brown et al., 1995; Pirie and 
Kieren, 1994). Classroom learning is the product of interactions between teachers, 
learners and mathematics (Kilpatrick et al., 2001) and is dependent on learnersô prior 
experiences, interests and motivations. Indeed, differences in the taught curriculum, 
home and society between, for example, England and the US, or the Pacific Rim, are 
important when considering research evidence from different parts of the world. The 
possibility of curriculum and other cultural effects must always be borne in mind, and 
findings cannot be transplanted simplistically from one place to another (Askew et 
al., 2010). 
 

3.3.2 Planning for progression 
 

Consequently, no single learning trajectory can describe the development of all 
learners at all times. However, there are broad patterns of progression in many skills. 
For example, when learning about addition, we would expect the vast majority of 
learners to count all before moving to count on (e.g., Gravemeijer, 1994). As we 
have already observed, it is helpful to consider most childrenôs mathematical 
development as falling on a continuum of typical development. Effective planning of 
a curriculum, as well as effective planning of support for all learners, needs to 
engage with realistic expectations regarding the likely variation in learning 
trajectories, and to encourage the development of strategies at different levels. Key 
to this is the way in which teachers themselves conceive of, and teach, mathematics 
as a connected discipline (Askew et al., 1997; Hiebert & Carpenter, 1992). 
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3.3.3 Learning trajectories for use in England 
 

There are several research-based approaches to learning trajectories developed in 
England (e.g. Brown, 1992), the US (e.g. Clements & Samara, 2014; Confrey et al., 
2009) and elsewhere (e.g., Clarke et al., 2000; de Lange, 1999). Some focus on 
particular strands or stages, such as primary number (Clarke et al., 2000) or 
multiplicative reasoning (Confrey et al., 2009). Learning trajectories have been 
comprehensively described in English policy documents, such as various versions of 
the National Curriculum (Brown, 1996) and the Primary and Secondary Frameworks 
for Teaching Mathematics (DfEE, 1998; 2001). However, it is important to note that 
none of these documents is perfect and, as Daro, Mosher and Corcoran (2011) 
observe, ñThere are major gaps in our understanding of learning trajectories in 
mathematicsò (p. 13). The learning trajectories described in English policy 
documents (DfEE, 1998; 2001) provide a model that, despite recent changes to the 
curriculum, is applicable, with adaptation, to the current English context, and which 
is at least partially evidence-based (Brown 1989, 1996; Brown et al., 1998). 
However, these should be read in conjunction with research-based commentaries on 
teaching and learning, such as Hart et al. (1981), Nunes et al. (2009), Ryan & 
Williams (2007) and Watson et al. (2013). 
 

3.4 Understanding learnersô difficulties 
 

It is essential for practitioners to understand the different ways in which learnersô 
mathematics may develop. We will outline models that seem to be most beneficial in 
allowing practitioners to identify key areas where learners encounter difficulties, as 
well as effective strategies for addressing these. Formative assessment entails 
establishing studentsô difficulties and adapting teaching so as to respond effectively 
(Black & Wiliam, 2009). 
 

3.4.1 Formative assessment and misconceptions 
 

We have highlighted the need to understand and build on learnersô existing 
knowledge. Assessing this knowledge involves being attuned to what learners bring 
to the mathematics classroom, being able to actively listen to and respond to 
learnersô own informal strategies (Carpenter et al., 1999) and to have awareness of 
the mathematical knowledge that learners develop in their everyday lives, such as 
informal ósharingô (division) practices (Nunes & Bryant, 2009). As part of this, 
practitioners need knowledge of common errors and misconceptions in 
mathematics, which are invaluable in diagnosing the difficulties learners encounter 
(Dickson et al., 1984; Hart, 1981; Ryan & Williams, 2007). 
 

It is important to note that ómisconceptionsô is a contested term (Daro et al., 2011; 
Smith III et al., 1994). For the purposes of this review, we define misconceptions as 
the result of an attempt to make sense of a situation, using ideas that have worked 
in past situations but do not adequately fit the current one. Hence, the term 
encompasses various ómet-beforesô (McGowen & Tall, 2010), such as partial 
understandings, over-generalisations and incorrect reasoning. It is important for 
practitioners to recognise misconceptions as part of typical mathematical 
development, and not necessarily as things that must be avoided or ófixedô 
immediately. For example, it would be hard to envisage a typical development that 
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did not include multiplication-makes-bigger-division-makes-smaller at some 
point along the way (Greer, 1994). 
 

3.4.2 Developing mathematical competency  
Each learnerôs trajectory through mathematics will be to some extent unique, 
involving their own particular difficulties and successes. However, there are many 
features of developing competency in mathematics that are common across a wide 
range of learners. Familiarity with some of the broad findings from research, as 
summarised in this report, can assist teachers in leading learners confidently 
through their mathematical journeys and responding in sensitive and mathematically 
coherent ways when difficulties arise. 
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Note 
 
 
1 Conceptual knowledge, or understanding, is referred to in different ways by different researchers. Kilpatrick et al. 
(2001) define it as ñcomprehension of mathematical concepts, operations, and relationsò (p. 5). Skemp (1976) refers to 
relational understanding and distinguishes this from instrumental knowledge, whereas Gray and Tall  

(1994) focus on a óproceptô as a process/object amalgam. Ma (1999) refers to a profound understanding of 

fundamental mathematics (although her work is focused on teacher knowledge). Nunes et al. (2012, see also 

Nunes et al., 2009) refer to mathematical reasoning, while others distinguish deep from superficial knowledge  

(Star, 2005). Hart et al. (1981) define óunderstandingô in terms of pupilsô ability to solve ñproblems é 
recognisably connected to the mathematics curriculum but which é require é methods which [are] not 
obviously órulesôò (Hart & Johnson, 1983, p.2). There are many nuances in these different approaches, but all 
highlight the importance of sense-making and of organising and connecting mathematical knowledge. 
 

2 Links between symbols and words for numbers (e.g., ó5Ĭ5ô and ótwenty-fiveô) are largely associative and 
arbitrary. Number bonds and tables, if fluent, may be very densely conceptually embedded; e.g., rapid 
retrieval may involve some self-monitoring: for example, ñ9 7s are 56 ï no that canôt be right ï 63ò. 
 

3 It is important to emphasise that classroom talk is important to the development of conceptual knowledge and 
to doing mathematics in general. Hence, much classroom talk will be strategic and conceptual in nature.  

4 We note that the relationship between metacognition and self-regulation is a current and disputed question, and 
researchers disagree on which is superordinate (see Gascoine et al., 2017).  

5 By óthe gapô, we mean the differences in understanding between the middle 95% of pupils in the age cohort  

(from the 2.5th to the 97.5th percentiles of attainment); i.e. two standard deviations either side of the mean. 
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4 Guide to Reading the Modules 
 

4.1 Meta-analysis, effect sizes and systematic reviews 
 

In this review, we have primarily drawn on meta-analyses rather than original 
studies. Meta-analysis is a statistical procedure for combining data from multiple 
studies. If a collection of studies are similar enough, and each reports an effect size, 
the techniques of meta-analysis can be used to find an overall effect size that 
indicates the best estimate of the underlying effect size for all of those studies. 
 

In education, effect size (ES) is usually reported as Cohenôs d or Hedgesô g, which 
are measures of the difference between two groups in units determined by the 
standard deviation (the variation or spread) within the groups. An effect size of +1 
means that the mean of the intervention group was 1 standard deviation higher than 
that of the control group. In practice, an effect size of 1 would be extremely large, 
and typical effect sizes of potential practical significance in education tend to be 
around the 0.1-0.5 range. Given our focus on experimental and quasi-experimental 
studies, we have largely reported measures of effect sizes using Cohenôs d or 
Hedgesô g. See Appendix: Technical (Section 14) for a definition of other measures 
of effect size reported or referred to in this review. 
 

Caution should be exercised in comparing effect sizes for different interventions 
which may not be truly comparable in any meaningful way. Judgment is always 
required in interpreting effect sizes, and it may be more useful to focus on the order 
of related effect sizes (higher or lower than some other effect size) rather than the 
precise values. It should be noted that effect sizes are likely to be larger in small, 
exploratory studies carried out by researchers than when used under normal 
circumstances in schools. Effect sizes may be artificially inflated when the tests used 
in studies are specifically designed to closely match the intervention, and also when 
studies are carried out on a restricted range of the normal school population, such 
as low attainers, for whom the spread (standard deviation) will be smaller. 
 

Where meta-analyses were not available in a particular area, we have instead 
made use of systematic reviews, which are a kind of literature review that brings 
together studies and critically analyses them, where computing an overall effect 
size is not possible, to produce a thorough summary of the literature relevant to a 
particular research question. 
 

4.2 Structure 
 

For each module, we give a headline, summarising the key points, followed by a 
description of the main findings. We summarise the evidence base from which this 
has arisen, and then comment on what we perceive to be the directness or 
relevance of the findings for schools in England. We score directness on a 1-3 scale 
of low-high directness on several criteria: 
 

Where and when the studies were carried out: in some modules, the majority 
of the original studies were carried out in the United States, whilst in others 
many studies were conducted more than 25 years ago, and the directness 
score reflects our judgment of the extent to which the contexts, taken as a 
whole, are relevant to the current situation in England. 
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How the intervention was defined and operationalized: the extent to which the 
intervention or approach as described is the same as the intervention could 
be if adopted by teachers in England.  
Any reasons for possible ES inflation: the extent to which the reported effect 
sizes may be artificially inflated.  
Any focus on particular topic areas: the extent to which the findings about 
effectiveness of intervention or approach are relevant across mathematics as 
a whole.  
Age of participants: in some modules, many of the original studies were 
conducted with older or younger learners, and the directness score reflects 
our judgment of extent to which the findings are relevant to the Key Stage 
2 and 3 age group. 

 

Finally, we provide details of the meta-analyses and other literature used. 
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5 Method 
 

5.1 Our approach to analysing and synthesising the literature 
 

Our approach was to carry out second-order meta-analysis ï i.e., meta-analyses of 
existing meta-analyses ï and occasionally third-order meta-analyses, where we 
summarise the findings of existing second-order meta-analyses. Second-order meta-
analyses (also known as umbrella reviews or meta-meta-analyses) have been 
widely used in the medical and health sciences, and are becoming more frequent in 
educational research (Higgins, 2016). The intention of this set of second-order meta-
analyses is to summarise the current evidence on teaching mathematics, as well as 
identify areas in which future meta-analyses and primary studies might be profitably 
directed. 
 

We have not conducted a quantitative meta-analysis of any set of first-order meta-
analyses. There were very few areas where several meta-analyses employed 
sufficiently similar research questions, theoretical frameworks and coding schemes 
to make a quantitative meta-analysis valid and straightforward to interpret. Instead, 
we present the results of the set of meta-analyses in tables, and we have adopted 
a narrative approach to synthesising the findings in each area. We have drawn on 
additional research when necessary to supplement the synthesis of the meta-
analyses for each research question, particularly where the research evidence in a 
particular area is limited or the findings require interpretation or translation for the 
context in England. Where possible, we have drawn on recent high-quality 
systematic reviews, but, in some cases, where the evidence base is weak, we have 
taken account of research reporting single studies. 
 

5.2 Limitations 
 

Whilst our second-order meta-analytic approach has several advantages, there are 
disadvantages. We are dependent on the theoretical and methodological decisions 
that underpin the existing meta-analyses, and inevitably some nuance is lost in our 
focus on the ñbig pictureò. We note also that there is an active debate on the 
statistical validity of meta-analytic techniques in education (Higgins & Katsipataki, 
2016; Simpson, 2016). Effect sizes are influenced by many factors, including 
research design, outcome measures or tests, and whether a teaching approach 
was implemented by the researchers who designed it or teachers. Meta-analyses of 
the highest quality use moderator analysis to examine whether these and other 
factors affect the magnitude of the effect sizes. 
 

5.3 Data set 
 

Our data set consists of 66 meta-analyses and 56 other relevant papers (mainly 
systematic reviews), written in English, relevant to the learning of mathematics of 
students aged 9-14, and published between 1970 and February 2017. These were 
identified using searches of electronic databases, the reference lists of the literature 
itself and our own and colleaguesô knowledge of the literature. See Sections 15 and 
16 (Appendices: Literature Searches, and Inclusion / Exclusion Criteria) for further 
detail. 
 

5.4 Coding and data extraction 
 

Each paper was coded as a meta-analysis, systematic review or óother literatureô, and 

details were recorded, including year of publication, author key words, abstract, 
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content area, main focus, secondary focus, key definitions, research questions, 
ranges of effect sizes, any pooled effect sizes and standard errors, number of 
studies and number of pupils, age range, countries studies conducted in, study 
inclusion dates, any pedagogic or methodological moderators or other analyses, 
inclusion/exclusion criteria and quality judgments. We assessed the methodological 
quality of the meta-analyses using six criteria, which we developed, informed by the 
PRISMA framework for rating the methodological quality of meta-analyses 
(http://www.prisma-statement.org/) and the AMSTAR criteria (Shea et al., 2009). For 
each meta-analysis, we graded each of our six criteria on a 1-3 (1 low, 3 high) scale. 
 

The strength of evidence assessments were based on the GRADE system in 
medicine (Guyatt et al., 2008). This is an expert judgment-based approach that is 
informed, but not driven, by quantitative metrics (such as number of studies 
included). These judgements took account of the number of original studies, the 
methodological quality of the meta-analysis (including limitations in the approach or 
corpus of studies considered), consistency of results, the directness of results, any 
imprecision, and any reporting bias. Two members of the research team 
independently gave a high/medium/low rating for each section. Disagreements 
were resolved through discussion. 
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6 Pedagogic Approaches 
 

6.1 Feedback and formative assessment 
 

What is the effect of giving feedback to learners in mathematics? 
 

The general findings in the EEF toolkit on feedback appear to apply to mathematics: 

research tends to show that feedback has a large effect on learning, but the range of 

effects is wide and a proportion of studies show negative effects. The effect of 

formative assessment is more modest, but is more effective when teachers receive 

professional development or feedback is delivered through computer-assisted 

instruction. In mathematics, it may be particularly important to focus on the aspects 

of formative assessment that involve feedback. Feedback should be used sparingly 

and predominantly reserved for more complex tasks, where it may support learnersô 

perseverance. The well-established literature on misconceptions and learnersô 

understandings in mathematics provides a fruitful framework to guide assessment 

and feedback in mathematics. 
 

Strength of evidence: HIGH 
 

Definitions 
 

In this review, feedback is conceptualised as ñinformation provided by an agent 
(e.g. teacher, peer, book, parent, self, experience) regarding aspects of oneôs 
performance or understandingò (Hattie & Timperley, 2007, p. 81). Formative 
assessment is broadly conceptualised as practices in which ñinformation was 
gathered and used with the intent of assisting in the learning and teaching processò 
(Kingston & Nash, 2011, p. 29). Giving feedback means informing learners about 
their progress, whereas formative assessment refers to a broader process in which 
teachers clarify learning intentions, engineer activities that elicit evidence of learning 
and activate students as learning resources for one another as well give feedback 
(Wiliam & Thompson, 2007). 
 

Findings 
 

Feedback is generally found to have large effects on learning, and the Education 
Endowment Foundation Teaching and Learning Toolkitôs (EEF, 2017) second-order 
meta-analysis found an overall ES of d=0.63 on attainment across all subjects. 
There is considerable variability in reported effects, with some studies reporting 
negative effects, and Hattie and Timperley (2007) warn that feedback can have 
powerful negative as well as positive impacts on learning. Few of the existing meta-
analyses on feedback examine mathematics specifically, but rather focus on the 
nature and causes of variability. However, many of the original studies are in the 
context of mathematics learning, and two meta-analyses report ESs for feedback in 
mathematics in comparison to other subjects: Scheerens et al. (2007) report that 
effects for mathematics (d = 0.14) are greater than for other subjects in general (d = 
0.06), and similar to those for reading, whilst Bangert-Drowns et al. (1991) find no 
significant differences between subjects, although these differences may be related 
to the groups of subjects that are compared. Hence, the general findings in the 
toolkit on feedback would appear to apply to mathematics. 
 

Kingston & Nashôs (2011) recent meta-analysis focuses on the wider strategy of 
formative assessment, of which feedback is a part, and their findings indicate a more 
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modest effect for formative assessment. Indeed, whereas feedback appeared to be 
particularly effective in mathematics, the opposite appears to the case for formative 
assessment, with Kingston & Nash reporting an ES for mathematics of 0.17, 
compared with 0.19 for science and 0.32 for English Language Arts. This suggests 
that, in mathematics, it may be particularly important to focus on the aspects of 
formative assessment associated with feedback. 
 

One meta-analysis suggests that feedback in mathematics is effective for low-
attaining students (d = 0.57) (Baker et al., 2002), although this effect may be inflated 
due to the restricted attainment range of the population, and a further meta-analysis 
finds a lower, although still positive, effect for students with learning disabilities (d = 
0.21) (Gersten et al., 2009). 
 

It is important to understand how to give and use feedback in order for these effects 
to be realised. EEF (2017) note that giving feedback can be challenging. The 
evidence indicates that feedback should be clear, task-related and encourage effort 
(e.g., Hattie & Timperley, 2007). Feedback appears to be more effective when it is 
specific, highlights how and why something is correct or incorrect and compares the 
work to studentsô previous attempts (Higgins et al., 2017). Feedback is most likely to 
be beneficial if used sparingly and for challenging or conceptual tasks, where 
delayed feedback is beneficial (see Soderstrom & Bjork, 2013). The well-established 
literature on misconceptions and learner understandings in mathematics may 
provide a fruitful framework to guide assessment and feedback in mathematics (see 
Misconceptions module). 
 

Kingston & Nashôs (2011) analysis examined different ways in which formative 

assessment was implemented. Two approaches appeared to be more effective than 

others: one was based on professional development and the other was computer-

based. These approaches yielded mean effect sizes of 0.30 and 0.28 respectively. In 

comparison, other approaches, such as curriculum-embedded formative assessment 

systems, which ñinvolved administering open-ended formative assessments at critical 

points throughout the curriculum in order to gain an understanding of the studentsô 

learning processesò (p. 32), had nil or very small effects. 
 

Evidence base 
 

We have drawn on four meta-analyses providing recent evidence of the impact of 
feedback in mathematics specifically. These synthesise a total of 275 studies with 
the date range 1982-2010. The four meta-analyses are all judged to be of medium or 
high methodological quality. While overall there is noted to be wide variability in 
studies looking at the effect of feedback across subjects, the ESs reported in these 
meta-analyses for mathematics are fairly consistent, with the exception of Baker et 
al. (2002), where the higher ESs may be accounted for by the inclusion of studies 
involving computer feedback. 
 

There is a need for more research on the nature of feedback specifically in 
mathematics. Kingston & Nash (2011) argue that, with formative assessment 
practices (which include feedback) in wide use, and with the potential of them 
to produce high effects, the paucity of the current research base is problematic.  

Meta-analysis Focus k Quality Date Range 
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 Baker et al. Instructional strategies in 15 2 1982-1999 
 (2002) mathematics for low-    

  achieving students    

 Gersten et al. Instructional strategies in 41 3 1982-2006 
 (2009) mathematics for students    

  with learning difficulties    

 Kingston & Formative assessment 42 3 1990-2010 
 Nash (2011)     

 Scheerens et Review of the 177 2 1995-2005 
 al. (2007) effectiveness of school-    

  level and teaching-level    

  initiatives    

Directness     
 

Overall we would assess the evidence base as being of high directness to 
the English context.  

Threat to directness Grade  Notes   

Where and when the 2  Studies were conducted in many countries, 
studies were carried    although a significant proportion were located 
out    in the US / UK. Scheerens et al. (2007) 

    conducted a moderator analysis using 
    ócountryô of study as a variable and found 
    results across countries to be broadly similar. 

How the intervention 3  Feedback is generally clearly 
was defined and    operationalised, although, as noted by Hattie 
operationalised    & Timperley (2007) and others, feedback is 

    not a straightforward strategy to implement 
    and can have powerful negative as well as 
    positive effects.   

Any reasons for 3  Two of the four meta-analyses looked at low- 
possible ES inflation    achieving learners or those with a learning 

    disability and, in these cases, the effects may 
    be inflated due to restricted samples. 

Any focus on 3      

particular topic areas        

Age of participants 3      

Overview of effects        

Meta-analysis  Effect  No of Comment 
  Size (d) studies (k)   
  

Impact of providing feedback to students on mathematics attainment 
for students with learning disabilities  
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Gersten et al. (2009) 0.21 12 This study looked at 
 [0.01,  interventions for LD 
 0.40]  students only. 

   This effect size was 
   calculated through the 
   combination of student 
   feedback (g=0.23 [0.05, 
   0.40], k=7) and goal- 
   setting student feedback 
   (g=0.17 [-0.15, 0.49], k=5). 

Impact of providing feedback to teachers on mathematics attainment for 

students with learning disabilities   

Gersten et al. (2009) 0.23 10  

 [0.05,   

 0.41]   

Impact of providing feedback on mathematics attainment for low attaining 
students    

Baker et al. (2002) 0.57 5 This study looked at 
 [0.27,  interventions for low- 
 0.87]  achieving students only. In 
   some cases this feedback 
   was computer-generated 
   (these studies are not 
   segregated). 

   The comparison group in 
   these four studies either 
   was provided with no 
   performance feedback or 
   with such limited feedback 
   that a relevant contrast 
   between the experimental 
   and comparison group 
   was meaningful. 

   This is a moderate effect 
   and the second largest 
   mean effect size found in 
   this synthesis. 

Impact of providing feedback on mathematics attainment in comparison to 
other subjects    

Scheerens et al. (2007) 0.136 152 Coefficient from moderator 
  included in analysis regression 
  moderator reported. Feedback is a 
  analysis broad category that 
  across all includes monitoring, 
  subjects, assessment, and tests. 
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  number of 
Language ES = 0.143   

maths   

All subjects ES = 0.06   studies not 
  reported;  

  we would  

  estimate  

  this to be  

  between 5  

  and 20.  

Impact of formative assessment on mathematics attainment in general 

Kingston & Nash (2011) 0.17 19 Moderator analysis 
 [0.14,  showed content area had 
 0.20]  the greatest impact on 
   mean effects. 

   English language arts d= 
   0.32 [0.30, 0.34.] 

   Science d= 0.09 [ī0.09, 
   0.25] 

Impact of formative assessment focused professional development 

programmes on overall attainment   

Kingston & Nash (2011) 0.30 23 Studies were coded as PD 
 [0.20,  where they examined 
 0.40]  ñprofessional development 
   that involved educators 
   spending a period of time 
   learning and focusing on 
   how to implement various 
   aspects of formative 
   assessment techniques 
   (e.g., commen- only 
   marking, self-assessment, 
   etc.) in their classroomsò 
   (pp. 31-2) 

Impact of the use of a computer-based formative assessment system on 
overall attainment    

Kingston & Nash (2011) 0.28 6 Studies coded in this 
 [0.26,  category ñinvolved the 
 0.30]  online administration of 
   short indicator level tests 
   that provided score reports 
   to teachers and are similar 
   to state-wide assessments 
   é One of these systems 
   incorporated an additional 
   tutoring feature in the form 
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of student-level 
scaffolding.ò (p. 32) 
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6.2 Collaborative learning 
 

What is the evidence regarding the effect of using collaborative 
learning approaches in the teaching and learning of maths? 
 

Collaborative Learning (CL) has a positive effect on attainment and attitude for all 

students, although the effects are larger at secondary. The largest and most 

consistent gains have been shown by replicable structured programmes lasting 12 

weeks or more. Unfortunately, these programmes are designed for the US 

educational system, and translating the programmes (and the effects) for the English 

educational system is not straightforward. The evidence suggests that students 

need to be taught how to collaborate, and that this may take time and involve 

changes to the classroom culture. Some English-based guidance is available. 
 

Strength of evidence: HIGH 
 

Findings 
 

The meta-analyses present definitions of CL ranging from the non-specific working 
with or among peers within group settings (Lee, 2000) through definitions built on 
Slavinôs studies (e.g. Slavin, 2007, 2008), where ñstudents of all levels of 
performance work together in small groups toward a common goalò (Othman, 1996, 
p. 10). Haas (2005) includes a far broader range of approaches, including whole-
class collaboration, although this definition sits outside of the other literature. CL 
may co-occur with other approaches (such as peer-tutoring), with Reynolds & Muijs 
(1999, p. 238) suggesting that CL should be used alongside whole-class interactive 
approaches to produce ñan optimal level of achievement across a range of 
mathematical skillsò. Furthermore, CL is commonly associated (particularly in the 
US) with specific programmes and approaches, such as Student Teams 
Achievement Divisions (STAD), Team Assisted Individualization (TAI), and dyadic 
methods (such as peer-tutoring). The five meta-analyses central to this evidence 
focussed on one or more of these programmes/approaches, although the majority of 
studies synthesised involved one particular programme, STAD. 
 

The impact of CL on mathematics attainment reported within four meta-analyses 
ranged from an ES of 0.135 (Stoner, 2004) to 0.42 (Slavin et al., 2008). Slavin et 
al.ôs finding, which is based on Middle and High School students, is higher than their 
finding (Slavin & Lake, 2007) for Elementary age students (0.29). In both cases, 
Slavin & Lake and Slavin et al. found CL, categorised together with other ñinnovative 
teaching approachesò, to be among the most effective programmes. The finding of a 
higher effect size with older students aligns with Othmanôs (1996) moderator 
analysis, which also found a higher ES for secondary grades (0.29 compared with 
0.18 for elementary). Slavin and his colleagues focused on replicable intervention 
programmes lasting 12 weeks or more, and found a larger effect than Othman for 
both Elementary, and Middle and High School, students. This suggests that students 
need to learn how to collaborate effectively. 
 

Meta-analyses we judged as secondary to this overall analysis (Chen, 2004; Lee, 
2000), on the basis of addressing a specific student population (lower-attainers and 
those with learning difficulties), suggest that CL may be less effective for this specific 
population. The needs of this population are considered in the module on responding 
to different attainment levels. 
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The impact of CL on attitudes to mathematics was reported within two meta-
analyses, which found ESs of 0.20 (Othman, 1996) and 0.35 (Savelsbergh et al., 
2016). Savelsbergh et al. found that, unlike attainment, the effect of CL on attitudes 
decreases as students got older (although we note that this may partly reflect the 
general trend that student attitudes to mathematics decrease with age). 
 

Evidence base 
 

Having excluded some meta-analyses due to their poor methodological quality and 
noted others as secondary to our evidence because of the population included, we 
found four meta-analyses examining the impact of CL on mathematics attainment for 
the general population, synthesizing a total of 79 studies over the period 1970ï2003. 
Due to Slavinôs focus on robust studies of replicable intervention programmes lasting 
12 weeks or more, the degree of study overlap was minimal [just three (14%) of 
Stonerôs (2004) and two (5%) of Othmanôs (1996) included studies overlapping with 
the studies included across both of Slavinôs analyses], leading to our judgement that 
the strength of the evidence base is high. 
 

We found two meta-analyses examining the impact of CL on mathematics 
attitude for the general population, which synthesised a total of 29 studies over 
the period 1970ï2014. There is no overlap between the studies included in these 
meta-analyses. 
 

All five included meta-analyses were rated as medium or high methodological 
quality. The range of reported effects is small. While the evidence for attitudes 
is more limited, these studies are fairly consistent in their findings. 
 

Given the US focus of the majority of studies and programmes, there is a need for 
experimental research to evaluate the effects of interventions adapted or designed 
for English mathematics classrooms.  

Meta- Focus k Quality Date 
analysis    Range 

Haas The effect of CL on the learning of 3 2 1980- 
(2005) algebra   2002 

Othman The effect of CL on mathematics 39 2 1970- 
(1996) attainment and attitude across   1990 

 Grades K-12    

Savelsberg The impact of different teaching 5 3 1988- 
h et al. approaches ï including CL ï on   2014 
(2016) student attitudes in mathematics    

 and science across Grades 3-11    

Slavin and The impact of a range of replicable 9 3 1985- 
Lake (2007) programmes lasting 12 weeks or   2002 

 more ï including CL programmes ï    

 on Elementary mathematics    

 achievement    

Slavin et al. The impact of a range of replicable 9 3 1984- 
(2008) programmes lasting 12 weeks or   2003 

 more ï including CL programmes ï    
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 on Middle and High School    

 mathematics achievement    

Stoner The effect of CL on mathematics 22 2 1972- 
(2004) attainment in the middle grades   2003 

 

Directness 
 

Our overall judgement is that the available evidence is of medium directness. 
 

The majority of the programmes examined in these meta-analyses are set in the US 

and, inevitably, the programmes are designed around the particularities of the US 

school system. Translating an intervention programme from one system to another is 

not straightforward, particularly where, as with CL, a programme is designed to alter the 

social norms of the mathematics classroom. The recent UK trial of PowerTeaching 

Maths (Slavin et al, 2013) demonstrates this difficulty. PowerTeaching Maths is a 

technology-enhanced teaching approach based around co-operative learning in small 

groups. However, the effects found in US experimental studies were not replicated in 

the UK. The researchers found that implementation was limited by the prevalence of 

within-class ability grouping in England, which appeared to affect teachersô 

implementation of key aspects of the approach. 
 

Nevertheless, the evidence from US programmes does suggest that the success of 
CL interventions relies on a structured approach to collaboration and that students 
need to be taught how to collaborate. Some UK-focused interventions have shown 
positive effects in quasi-experimental studies, such as the SPRinG approach in KS1, 
2 and 3, for which teacher guidance is readily available, although this is not specific 
to mathematics (Baines et al., 2014). Evidence-based guidance on CL at secondary 
is readily available in schools (Swan, 2015).  

Threat to directness Grade Notes 

Where and when the 2 All meta-analyses were US-based and few of 
studies were carried  the included studies were located in the UK. 
out  These meta-analyses predominantly 

  considered specific CL programmes rather 
  than a more general notion of CL which may 
  be applied in the UK. Slavin et al. (2013) note 
  that extensive professional development is a 
  common feature to these programmes given 
  to teachers embarking on such approaches, 
  suggesting that the positive impacts of US 
  CL approaches ñcan be readily 
  disseminated.ò 

How the intervention 3 CL clearly defined and usually associated 
was defined and  with specific programmes. 
operationalised   

Any reasons for 3 No ï meta-analyses related to LA and LD 
possible ES inflation  populations taken out of main analysis. 

Any focus on 3  

particular topic areas   

Age of participants 3  
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Overview of effects  

Meta-analysis Effect No of Comment 
 Size (d) studies (k)  

Effect of Collaborative Learning (CL) on mathematical attainment 

Othman (1996): all 0.266 39 Range of CL approaches 
grades   included: Students Teams- 

   Achievement Division 
   [STAD], Team Assisted 
   Individualization [TAI], 

   Teams-Games- 
   Tournament [TGT], 
   Learning Together, Peer 
   Tutoring 

Stoner (2004); middle 0.135 22 Included range of general 
grades   CL approaches and 

   specialist programmes 
   including: STAD, TAI and 
   TGT 
 

Effect of replicable Collaborative Learning (CL) programmes lasting 12 
weeks or more on mathematical attainment  

Slavin and Lake (2007): 0.29 9 Examined three US CL 
primary   programmes: Classwide 

   Peer Tutoring, Peer- 
   Assisted Learning (PALS), 
   STAD 

Slavin et al. (2008): 0.42 9 Examined four US CL 
secondary   programmes: STAD, 

   PALS, Curriculum-Based 
   Measurement, IMPROVE 

Effect of Collaborative Learning (CL) on attitudes to mathematics 

Othman (1996): all 0.20 24  

grades    

Savelsbergh et al. 0.35 5 95% CI [0.24; 0.47] 
(2016): all grades   

Total of 65 experiments    

   from 56 studies. Only 5 
   looked at CL in maths 

Effect of Collaborative Learning (CL) on learning of algebra 

Haas (2005) 0.34 3  
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6.3 Discussion 
 

What is known about the effective use of discussion in teaching and 
learning mathematics? 
 

Discussion is a key element of mathematics teaching and learning. However, there is 

limited evidence concerning the effectiveness of different approaches to improving 

the quality of discussion in mathematics classrooms. The available evidence 

suggests that teachers need to structure and orchestrate discussion, scaffold 

learnersô contributions, and develop their own listening skills. Wait time, used 

appropriately, is an effective way of increasing the quality of learnersô talk. Teachers 

need to emphasise learnersô explanations in discussion and support the 

development of their learnersô listening skills. 
 

Strength of evidence: LOW 
 

Introduction 
 

Discussion is an important tool for learning mathematics. However, there is limited 

evidence concerning the effectiveness of different approaches aimed at improving 

the quality of discussion in mathematics classrooms. We found no meta-analyses 

looking at discussion in mathematics, and only three systematic reviews. 
 

Findings 
 

Effective discussion in the mathematics classroom goes beyond setting up opportunities 

for talk. Eliciting and supporting effective dialogue is not simple (Walshaw & Anthony, 

2008). Much classroom discourse follows the initiation-response-evaluation (IRE) model, 

in which the teacher initiates by asking a question, the learner responds by answering 

the question and the teacher then gives an evaluation. While this has its uses, 

classroom discussion can be enhanced by facilitating more extended contributions from 

all learners (Kyriacou & Issitt, 2008). Alexander et al. (2010) argue that dialogic teaching 

is crucial to advancing learning. In contrast to IRE, dialogic teaching involves a back-

and-forth between the learners and the teacher, and requires careful and effective 

structuring (Alexander, 2017). The classroom culture and the actions of the teacher 

need to allow all learners to contribute equally; Walshaw and Anthony (2008) cite a 

number of studies suggesting that particular students often dominate discussion in the 

mathematics classroom. 
 

Increasing wait time, the time a teacher pauses after asking a question before 
accepting learner responses, has been shown to be an effective way of increasing 
the quality of talk (Tobin, 1986, 1987). Wait time in mathematics lessons is typically 
less than 1 second, suggesting that priority is often given to maintaining a brisk pace 
with a focus on quickly obtaining correct óanswersô. Evidence suggests that 
increasing wait time to around 3 seconds, particularly when higher-order questions 
are used, can have dramatic effects on learnersô involvement in classroom 
discussion, leading to higher-quality responses from a greater range of learners. A 
further increase of wait time to more than 5 seconds, however, decreases the 
quality of classroom talk (Tobin, 1987). 
 

Improving mathematics dialogue is more complicated than just instigating ómore 
talkô; effective talk also requires effective listening, particularly so on the part of the 
teacher (Kyriacou & Issitt, 2008). Teachers need to listen actively to learnersô 
contributions, particularly their explanations, and show genuine interest in these, 
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rather than listening in an evaluative manner for expected answers (Walshaw & 

Anthony, 2008). The focus of talk needs to shift from evaluation (judging the 

correctness of an answer) to exploration of mathematical thinking and ideas (Kyriacou & 

Issitt, 2008; Walshaw & Anthony, 2008). Teachers need to teach learners how to 

discuss and ñwhat to do as a listenerò (Walshaw & Anthony, 2008, p. 523). Walshaw 

and Anthony (2008) cite studies finding that some primary learners simply do not know 

how to explain mathematical ideas, and that the teacher needs to establish norms for 

what counts as mathematically acceptable explanation. 
 

Effective discussion is likely to be part of collaborative approaches to learning. This 
will include elements of listening, reflection, evaluation, and self-regulation (Kyriacou  
& Issitt, 2008). Discussing mathematics can help to make learnersô thinking visible 
and enable ideas to be critiqued (Walshaw & Anthony, 2008). 
 

Evidence base 
 

As stated above, the evidence base examining discussion in mathematics is limited. 
We identified no relevant meta-analyses and, hence, we draw on three research 
syntheses.  

Research-synthesis Focus and core findings 

Kyriacou & Issitt (2008) UK study of mathematics lessons 

 Covered Key stages 2 and 3 (learners aged 7 
 ï 14) 

 Analysis of 15 primary studies 

 Examined the characteristics of effective 
 teacher-initiated teacher-pupil dialogue 

 Focussed on outcome measure of conceptual 
 understanding in mathematics 

 Noted the dominance of IRE and the need to 
 go beyond this 

 Strongest evidence came from studies in 
 which teachers taught learners how to make 
 use of dialogue 

 Identified paucity of evidence in the area 

Tobin (1987) Australian review of studies involving wait time 

See also Tobin (1986) in a range of subject areas and grade levels 

Identified 6 primary studies in which wait-time  

 was not manipulated: 
 o  4 studies included learners aged 9-14 
 o  2 studies involved mathematics 

 Identified 19 primary studies in which wait- 
 time was manipulated: 
 o  13 studies included learners aged 9-14 
 o  Only 1 study involved mathematics 
 (68% were in science) 

 Found that a wait time of longer than 3 
 seconds resulted in changes to teacher and 
 student discourse 
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 Suggests that the additional óthink timeô may 
  result in higher cognitive learning 

 Cautions against the simplistic notion of 
  increasing wait-time to make classrooms more 
  effective 

Walshaw & Anthony  New Zealand review of primary studies into 
(2008)  how teachers manage discourse in 

  mathematics classrooms 

 Draws on the data set of Anthony & 
  Walshawôs (2007) Effective Pedagogy in 
  Mathematics/Pangarau: Best Evidence 
  Synthesis Iteration (see references elsewhere 
  in this review) 

 Theorises mathematics classrooms as activity 
  systems in understanding effective pedagogy 
  (in relation to dialogue) 

  Four core requirements: 
 i. A classroom culture where all learners are 
  able to participate equally 
 ii. Ideas are coproduced through dialogue, 
  extending other learnersô thinking 
 iii. Teachers do not accept all answers but 
  listen attentively and help to build dialogue 
  to develop mathematical ideas 
 iv. Teachers need the subject knowledge and 
  flexibility to spot, help learners make sense 
  of, and develop, mathematically grounded 
  understanding 

Directness   
 

While the available evidence is limited, that which we found has direct relevance to 
the English mathematics classroom context.  

Threat to directness Grade Notes 

Where and when the 3 The three reviews were conducted in the UK 
studies were carried  or Australasia, drawing on a range of primary 
out  studies. The conclusions have applicability to 

  the English mathematics classroom context. 

How the intervention 3 All three reviews carefully define dialogue / 
was defined and  wait-time. 
operationalised   

Any focus on 2 Kyriacou & Issitt (2008) and Walshaw & 
particular topic areas  Anthony (2008) focus solely on mathematics. 

  Some caution should be exercised in 
  applying the findings from Tobinôs (1987) 
  review of wait time to the mathematics 
  classroom. 
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Age of participants 3 Large crossover with our focus on learners 
  aged 9-14. 
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6.4 Explicit teaching and direct instruction 
 

What is the evidence regarding explicit teaching as a way of improving 

pupilsô learning of mathematics?1 
 
Explicit instruction encompasses a wide array of teacher-led strategies, including 

direct instruction (DI). There is evidence that structured teacher-led approaches can 

raise mathematics attainment by a sizeable amount. DI may be particularly 

beneficial for students with learning difficulties in mathematics. But the picture is 

complicated, and not all of these interventions are effective. Furthermore, these 

structured DI programmes are designed for the US and may not translate easily to 

the English context. Whatever the benefits of explicit instruction, it is unlikely that 

explicit instruction is effective for all students across all mathematics topics at all 

times. How the teacher uses explicit instruction is critical, and although careful use is 

likely to be beneficial, research does not tell us how to balance explicit instruction 

with other more implicit teaching strategies and independent work by students. 
 

Strength of evidence: MEDIUM 
 

Findings 
 

Explicit instruction refers to a wide array of ñteacher-ledò approaches, all focused on 

teacher demonstration followed by guided practice and leading to independent practice 

(Rosenshine, 2008). Explicit instruction is not merely ñlecturingò, ñteaching by tellingò or 

ñtransmission teachingò. Although explicit instruction usually begins with detailed 

teacher explanations, followed by extensive practice of routine exercises, it later moves 

on to problem-solving tasks. However, this always takes place after the necessary ideas 

and techniques have been introduced, fully explained and practised, and not before. In 

this way, explicit instruction differs from inquiry-based learning or problem-based 

learning approaches, in which, typically, students are presented (for example, at the 

start of a topic) with a problem that they are not expected to have any methods at their 

fingertips to solve (Rosenshine, 2012). 
 

A very important and the most heavily-researched example of explicit instruction is 
direct instruction (DI), which exists in various forms. Direct Instruction (with initial 
capital letters, here always written in italics) refers to a particular pedagogical 
programme, first developed by Siegfried Engelmann in the US in the 1960s. This 
was designed to be implemented as a complete curriculum, and involves pre- and 
post-assessments to check studentsô readiness and mastery, teacher scripts, clear 
hierarchies of progression, a fast pace, breaking tasks into small steps, following 
one set approach and positive reinforcement. Looser understandings of DI than this 
draw on some of these features without adopting the full programme in its entirety. 
At its core, DI stresses the modelling of fixed methods, explaining how and when 
they are used, followed by extensive structured practice aimed at mastery. (Note 
that this understanding of ómasteryô is different from mastery as currently being 
promoted in England, although it has some similarities to Bloomôs [1968] approach 
to mastery ï see the Mastery module, 6.5.) 
 

There is strong evidence for medium to high effects of both DI in general and 
Direct Instruction in particular on mathematics attainment (e.g., Dennis et al., 2016;  
 

 
1 For an English audience, we have chosen to refer to óexplicit teachingô in the title question, although 
the research literature refers in the main to óexplicit instructionô. 
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Gersten et al., 2009), and some evidence that DI is particularly beneficial for 
students with learning difficulties in mathematics (e.g., Chen, 2004; Haas, 2005). 
However, a large range of effect sizes has been reported (for example, from 0.08 to 
2.15 in Gersten et al., 2009). It is possible that some of the ñtoo good to be trueò 
effect sizes have been inflated due to methodological features of the studies (see 
below). 
 

There is some indication that when teacher instruction is more explicitly given, and 
studentsô activity is more tightly specified, larger effects on attainment are obtained 
(Gersten et al., 2009). Gersten et al. (2009) contrasted L. S. Fuchs, Fuchs, Hamlett, 
et al. (2002), who reported an effect size of 1.78 for students who were taught to 
solve different word problems step by step, with Ross and Braden (1991), where the 
effect size was 0.08, and where students worked through ñreasonable steps to solve 
the problem but are not explicitly shown how to do the calculationsò (p. 1216). It may 
be that the more tightly focused the DI is on the procedure or concept being 
learned, the higher the ES. 
 

As discussed in Section 3, almost every strategy benefits from the judicious use of 
ñexplicit instructional guidanceò in some form. Jacobse & Harskamp (2011, p. 26) 
found that DI had an effect of similar size to other ñconstructivistò strategies, 
including ñguided discoveryò. In contrast to this, there is considerable evidence that 
ñpureò unguided discovery (unstructured exploration) is less effective [Mayer, 2004; 
see also Askew et al.ôs (1997) study of effective teaching of numeracy in primary 
schools in England, which found that effective teachers tended to have a 
connectionist rather than a transmissionist or a discovery orientation towards 
teaching mathematics]. The literature on DI does not address the question of how to 
balance explicit teaching with other less ñdirectò teaching strategies and 
independent work by students. 
 

Explicit instruction has been criticised by some as an excessively regimented 
approach (Borko & Wildman, 1986) with an undesirable focus on rote factual 
knowledge and preparation for tests, with students in a passive learning mode 
(Brown & Campione, 1990) and teachers reduced, in some cases, to merely reading 
out a script. However, proponents of forms of explicit instruction argue that creating 
an instructional sequence that is carefully based on research allows studentsô skills 
to be sequenced, so that they learn in a cumulative and efficient way (McMullen & 
Madelaine, 2014). 
 

Horak (1981) found no overall effect for individualised instruction in comparison 
to traditional instruction. 
 

Evidence base 
 

We identified seven meta-analyses synthesising a total of 126 unique studies. Three 
of these meta-analyses were of overall high quality, although we had reservations 
about aspects of the methodologies ï in particular, lack of clarity over definitions of 
explicit instruction and possible biases associated with search and inclusion criteria. 
The other four meta-analyses were of medium quality. Pooled effect sizes across 
the meta-analyses ranged from 0.55 to 1.22. 
 

As mentioned above, Gersten et al. (2009) found a large range of effect sizes for DI, 

from 0.08 to an enormous 2.15. It is possible that some of the high effect sizes could 

have been obtained as a consequence of interventions being used specifically with low-

attaining subsets of the population (which have smaller standard deviations, 
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leading to inflated effect sizes) or as a result of regression to the mean when 
selecting study participants based on previous low attainment. It may also be the 
case that the ñdirectnessò of DI approaches makes these inherently more likely to 
produce high effect sizes, since the match between the intervention and the post-test 
is likely to be high for an intervention which explicitly tells students what they are 
supposed to be learning. It is arguable to what extent this constitutes fair 
measurement of the intervention or is an artefact of the style of this particular kind of 
intervention (Haas, 2005). Very few studies included delayed post-tests, which would 
help to assess longer-lasting effects of explicit instruction. The specific focus of tests 
used is also important; we would expect higher effect sizes where tests related to 
precisely the method being taught, but if learners were tested on their ability to 
transfer their knowledge to some related but different problem, it could be that 
explicit instruction approaches would be found to be less effective. 
 

Gersten et al.ôs (2009) pooled effect size of 1.22 might be regarded as inflated, since 
it is well outside the normal range of effect sizes obtained for educational 
interventions. As mentioned above, the range in Gersten et al. (2009) is very large 
(0.08 to 2.15), with a Q statistic of 41.68 (df = 10, p < .001), meaning that it is not 
reasonable to suppose that there is a single true underlying effect size for these 
studies. 
 

Gersten et al. (2009) have reservations regarding the methodology used by 
Kroesbergen & Van Luit (2003) in finding that DI and self-instruction were more 
effective than mediated instruction. Reported ESs from small (or even single-
subject) designs (or those focused exclusively on very low attainers) may not be 
reliable indicators of likely gains in terms of the entire cohort. 
 

The percentages of overlapping studies between the meta-analyses used here are 

generally small, except for Baker et al. (2002), Gersten et al.(2009) and Kroesbergen  
& Van Luit (2003). All of the other meta-analyses have percentages of unique 
studies (not shared with any of the other meta-analyses) over 60%. This could be a 
result of different definitions of DI leading to different subsets of studies being 
selected. 
 

Directness 
 

DI has been strongly promoted as a highly effective approach to teaching (e.g., 
Gersten, Baker, Pugach, Scanlon, & Chard, 2001). The majority of the studies 
synthesised were carried out in the US. General similarities between the school 
systems in England and the US contribute to the directness of these findings. 
However, the ósocial validityô of an intervention such as DI could be weak in England, 
where teachers tend to be less comfortable with teacher-centred and highly directed 
approaches than they may be in the US. (See the ñTextbooksò module ï 7.5 ï for 
further detail.) 
 

A very large proportion of the DI studies synthesised in meta-analyses are with low-
attaining students. Not only is this potentially problematic in terms of inflated effect 
sizes (as discussed above), but it also threatens the directness of these findings for 
generalisability to the whole cohort. 
 

The variety of definitions of DI is also highly problematic, as it is sometimes unclear 
that like is being compared with like, both within a single meta-analysis but, even 
more so, when bringing together several different meta-analyses carried out by 
different authors. Some studies combine DI interventions which appear to vary 
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considerably. In Baker et al. (2002), for instance, two of the four studies are 
Engelmann-influenced Direct Instruction studies, both with very small samples (N = 
35 and 29), which feature video instruction as well as teacher-led instruction. 
However, the overall ES reported by Baker et al. is driven by the other two studies, 
which are based on the Mayer (2004) heuristic method for problem-solving (N = 90 
and 489). 
 

Implementation of DI in mathematics in England would have to take account of 
numerous factors, including content area, curriculum and resources. It would also 
be important to know for what length of time DI would need to be implemented for 
effects to be seen. In Haas (2005, p. 30), the mean length for interventions was 
about 11 weeks, and it could be that extended use of DI is necessary for sizeable 
effects to be seen. Whatever the benefits of DI, it is likely that DI is not equally 
effective for all students at all times.  

Threat to directness Grade Notes 

Where and when the 2 The majority of the studies were carried out in the 
studies were carried  US, but the conclusions have applicability to the 
out  English mathematics classroom context. However, 

  there could be a ósocial validityô problem with DI. 

How the intervention 1 Varied definitions of DI. 
was defined and   

operationalised   

Any focus on 1 Mainly low-attaining students. 
particular topic areas   

Age of participants 3  

Further research   
 

There is a need for research into DI approaches in England that includes delayed 
post-tests as well as investigation of the relative benefits for different topics and 
procedural versus conceptual learning. It is also important to explore the effect of 
different kinds of tests ï those focused on far transfer from the context of the 
teaching would be particularly valuable. It would also be beneficial to have smaller-
scale experimental studies before large-scale trials. An extensive theoretically-
informed meta-analysis and a systematic review are both needed. 
 

Overview of effects 

Meta- Effec No of Quality Comments 
analysis t studies   

 Size (k)   

 (d)    

    Broad review on teaching 
    mathematics to low-achieving students 

Baker, 
   included studies coded as ñexplicit 
   

instructionò: ñIn these studies, the 
Gersten & 0.58 4 2 

manner in which concepts and 
Lee (2002) 

   

   
problem solving were taught to     

    students was far more explicit than is 
    typical.ò (p. 63) 

    51 



    Focused on mathematics interventions 
    for students with learning disabilities. 
    They see DI as ñbased on teacher-led, 
    structured, and systematic explicit 
    instructionò (p. 4) ñThe characteristics 
    of direct instruction highlight fast- 
    paced, well-sequenced, highly 

Chen (2004) 1.01 8 3 
focused lessons, delivering lessons in 
a small-group, providing ample     

    opportunities for students to respond 
    and instant corrective feedbackò (p. 
    19). They state confidently that ñit is 
    safe to conclude that direct instruction 
    is highly effective for mathematics 
    remediation for students with learning 
    disabilities.ò (p. 108) 

    Use Baker et al.ôs classification and 

Dennis et al. 
   found explicit teacher-led instruction to 

0.76 18 3 be the second most effective 
(2016)    

approach that they looked at (following     

    peer-assisted learning). 

    They included studies if all three of 
    these criteria were met: 

    (a) The teacher demonstrated a step- 
    by-step plan (strategy) for solving the 
    problem, (b) this step-by-step plan 
    needed to be specific for a set of 
Gersten et 

1.22 11 3 
problems (as opposed to a general 

al. (2009) problem-solving heuristic strategy),    

    and (c) students were asked to use 
    the same procedure/steps 
    demonstrated by the teacher to solve 
    the problem. 

    Studies covered ña vast array of 
    topicsò (p. 1216). 

    Looked at secondary algebra. They 
    define DI as ñEstablishing a direction 
    and rationale for learning by relating 
    new concepts to previous learning, 

Haas (2005) 0.55 10 2 
leading students through a specified 
sequence of instructions based on     

    predetermined steps that introduce 
    and reinforce a concept, and providing 
    students with practice and feedback 
    relative to how well they are doing.ò 
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    Found that DI had the largest effect for 
    low-ability and high-ability students (p. 
    30). 

Horak (1981) -0.07 129 2 
Found a great deal of variation across 
individualised instruction approaches.     

    Looked at effects of instructional 
    interventions on studentsô 
    mathematics achievement. 

    Although the ES is 0.58 their finding 
    was that there is no difference 
    between direct and ñindirectò 
    instruction (ES = 0.61). However, 

Jacobse & 
   they equate ñindirectò with ñthe 
   

constructivist approach of guiding 
Harskamp 0.58 40 2 students instead of leading themò (p. 
(2011)    26). Their definition was ñDirect 

    

    instruction is an instructional approach 
    where a teacher explicitly teaches 
    students learning strategies by 
    modeling and explaining why, when, 
    and how to use them.ò (p. 5). They 
    speculate that for students of low 
    ability, DI may be most effective (p. 
    24), but cannot confirm this (p. 26). 

    Looked at elementary students with 
    special needs (students at risk, 

Kroesbergen 
   students with learning disabilities, and 
   

low-achieving students) and examined 
& Van Luit 0.91 35 2 a range of interventions. 
(2003) 

   

   
DI and self-instruction were found to     

    be more effective than mediated 
    instruction. 
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6.5 Mastery learning 
 

What is the evidence regarding mastery learning in mathematics? 
 

Evidence from US studies in the 1980s generally shows mastery approaches to be 

effective, particularly for mathematics attainment. However, very small effects were 

obtained when excluding all but the most rigorous studies carried out over longer 

time periods. Effects tend to be higher for primary rather than secondary learners 

and when programmes are teacher-paced, rather than student-paced. The US meta-

analyses are focused on two structured mastery programmes, which are somewhat 

different from the kinds of mastery approaches currently being promoted in England. 

Only limited evidence is available on the latter, which suggests that, at best, the 

effects are small. There is a need for more research here. 
 

Strength of evidence: MEDIUM 
 

Findings 
 

Bloom (1968) argued that when all learners in a class receive the same teaching, 
the learning achieved will vary considerably, whereas if instructional time and 
resources could be tailored to each learnerôs individual needs, a more uniform level 
of attainment could be achieved. He consequently advocated a mastery model of 
teaching in which teachers offered learners a variety of different approaches, with 
frequent feedback and extra time for those who struggled (which could take the form 
of tutoring, peer-assisted learning or extra homework). Content would be divided into 
small units, with tests at the end of each, and progression would be permitted only if 
learners exceeded a high threshold (such as 80%) on the tests. Alongside this would 
be enrichment tasks for those who had mastered the main ideas. Mastery has many 
similarities to direct instruction (see the module on explicit teaching), but differs in 
that in mastery, learners may be presented with alternative strategies. 
 

In recent years in England, mastery learning has come to refer to a collection of 
practices used in high-performing jurisdictions, such as Shanghai and Singapore, 
which are focused on a coherent and consistent approach to using manipulatives 
and representations. In common with Bloom, mastery learning in this sense aims for 
a more uniform degree of learning and for all learners to achieve a deep 
understanding of and competence in the central ideas of a topic. However, this is 
through interactive whole-class teaching and common lesson content for all pupils 
(NCETM, 2016). This approach also encourages carefully sequenced lessons and 
early intervention to support learners who are struggling. 
 

Fairly high to very high effect sizes are generally found for mastery approaches in 
mathematics (Guskey, & Pigott, 1988; Kulik, Kulik, & Bangert-Drowns, 1990; Rakes 
et al., 2010), particularly at primary (Guskey & Pigott, 1988), and particular where 
learners are forced to move through material at the teacherôs pace, rather than at 
their own (Kulik, Kulik, & Bangert-Drowns, 1990). It also seems to be important for 
strong effects that learners are required to perform at a high level on unit tests (e.g., 
to obtain 80-100% correct) before proceeding, and that they receive feedback (Kulik, 
Kulik, & Bangert-Drowns, 1990). Low-attaining pupils may benefit more from 
mastery learning than high-attaining students (EEF, 2017). 
 

In contrast to these findings, Slavinôs (1987) best-evidence synthesis examined the 
results of seven studies which met his stringent criteria, which included longer 
interventions and the use of standardised achievement measures (rather than 
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experimenter-made measures). He found an overall ES of essentially zero (0.04), 
which suggests that caution should be exercised over the findings of the other meta-
analyses. He argued that results in other meta-analyses could have been inflated by 
experimenter-designed instruments (i.e., teaching to the test) and effects deriving 
from increased instructional time and more frequent criterion-based feedback, rather 
than mastery per se. This raises an important issue. Mastery learning, like direct 
instruction, may be particularly effective in addressing specific topics or procedures, 
as might be measured by experimenter-designed instruments. Moreover, like direct 
instruction (McMullen, & Madelaine, 2014; Rosenshine, 2008), mastery claims to 
address conceptual as well as procedural knowledge. However, it is less clear that 
these approaches help learners to develop connections between areas of 
mathematics, or generic problem-solving skills, or the vital area of metacognition. It 
has been suggested that mastery learning may be most effective as an occasional 
or supplementary teaching approach; it appears that the impact of mastery learning 
decreases for programmes longer than around 12 weeks (EEF, 2017). 
 

Evidence concerning the efficacy of the mastery learning approach currently being 
promoted in England is limited. Unlike the mastery programmes based on Bloomôs 
work, key aspects of the approach such as early intervention and careful sequencing 
are not specified in detail. Rather, they are communicated through general principles 
(e.g., NCETM, 2016). It is left to schools and teachers to develop these principles 
into specific practices. The shift towards a mastery approach involves substantial 
professional change, and it seems unlikely that this will be achieved without 
considerable support, resources and professional development, such as that which 
was made available for the National Numeracy Strategy (Machin & McNally, 2009). 
However, one whole-school programme, Mathematics Mastery, provides a structure 
for schools that aims to deepen pupilsô conceptual understanding of key 
mathematical concepts by covering fewer topics in more depth, emphasising 
problem solving and adopting the Concrete-Pictorial-Abstract approach commonly 
used in Singapore. Two RCTs of Mathematics Mastery carried out by the EEF 
(Jerrim & Vignoles, 2015), one at primary and the other at secondary, did not find 
effects that were significantly different from zero, but when these separate studies 
were combined a very small positive ES of 0.07 was produced. It is possible that the 
small sizes of the effects (if any) could be due to the fact that, unlike the US 
programmes, Mathematics Mastery does not wait to start new topics until a high 
level of proficiency has been achieved by all students on preceding material. 
 

Evidence base 
 

The evidence base is dated, but three meta-analyses (Guskey, & Pigott, 1988; 
Kulik, Kulik, & Bangert-Drowns, 1990; Rakes et al., 2010) report effect sizes for 
mastery in mathematics, while a fourth indicates an overall effect across subjects 
but where three of the seven studies synthesised are from mathematics. 
 

Guskey and Pigott (1988) found a mathematics ES of 0.70, which was larger than 
for other subjects (0.50 for science and 0.60 for language arts). They also found that 
mastery had significantly higher effects for primary level. 
 

In their systematic review of algebra instructional improvement strategies among 
older (Grades 9-college) students, Rakes et al. (2010) also found an overall ES of 
0.469 for mastery in mathematics. 
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Kulik, Kulik and Bangert-Drowns (1990) investigated two different approaches to 
mastery ï Bloomôs Learning for Mastery (Bloom, 1968), where all learners move 
though the material at the same pace, and Keller's Personalized System of 
Instruction (Keller, 1968), where learners work through the lessons at their own 
pace. The authors found an overall ES of 0.47 for mathematics, which was similar to 
that for science but lower than that for social science, and no difference in ES 
between the two approaches. Eleven of the studies reported by Kulik, Kulik and 
Bangert-Drowns (1990) examined student performance on delayed post-tests, about 
8 weeks after the intervention was concluded. The average ES obtained was 0.71, 
which was not significantly different from the average ES at the end of instruction 
across these same 11 studies, which was 0.60. Kulik, Kulik and Bangert-Drowns 
(1990) reported that ESs as large as 0.8 were ñcommonò (p. 286) in studies which:  

focused on social sciences rather than on mathematics, the natural sciences, 
or humanities;  
used locally-developed rather than nationally standardised tests as 
measures of learner achievement;  
required learners to move through material at the teacherôs pace, rather 
than at individual studentsô;  
required students to perform at a high level on unit tests (e.g., obtain 100% 
correct);  
the control students received less test feedback than the intervention students 
did. 

 

Directness 
 

Most of the research synthesised is from the US, using dated programmes that were 
not designed for England. The exceptions to this are the two studies of Mathematics 
Mastery, which showed very small or no effects. 
 

It may be that the level of prescription associated with some versions of mastery 
could be unattractive to mathematics teachers in England. Research is needed into 
the kinds of mastery approaches currently being advocated in England.  

Threat to directness Grade Notes 

Where and when the 2 Most of the research is located in the US and, 
studies were carried  aside from Mathematics Mastery, the programmes 
out  were not designed for England and are different in 

  approach from the mastery approaches currently 
  being promoted in England. 

How the intervention 2 Social validity: Teachers in England may find the 
was defined and  high level of prescription in some kinds of mastery 
operationalised  teaching unacceptable. 

Any reasons for 2 See Slavinôs (1987) critique. 
possible ES inflation   

Any focus on 2 Mastery may be more effective for teaching 
particular topic areas  specific procedures and less effective for 

  developing conceptual understanding, 
  metacognition, connections and problem solving. 

Age of participants 3  
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Overview of Effects 

Study Effect size No. of Quality Notes 
  studies judgment  

   (1 low to 3  

   high)  

Guskey, & 0.70 36 2 The mathematics effects were 
Pigott  maths  not homogenous, but split into 
(1988)    topics and levels (algebra, 

    geometry, probability, 
    elementary, general high 
    school). Only showed 
    homogeneity for probability, 
    so considerable variation is 
    not explained. 

Kulik, 0.47 25 2 Compared two approaches: 
Kulik, &  maths  Bloomôs Learning for Mastery 
Bangert-    (LFM) and Kellerôs 
Drowns    Personalized System of 
(1990)    Instruction (PSI) and found no 

    evidence of a difference 
    between them. 

Rakes et 0.469 4 3 Value obtained from 
al. (2010)    supplementary data provided 

    by the author. However, the 
    ES is only based on studies 
    with older students: Grades 9, 
    10 and college. All are pre- 
    1987, but no overlap with 
    Kulik et al. or Guskey, & 
    Pigott. 

Slavin 0.04 7 (3 2 Some key criticisms of 
(1987)  maths)  mastery approaches. This is a 

    best-evidence synthesis, so a 
    bit more than a meta-analysis. 

Mathematics Mastery Studies   
 

(Note: these are two single studies, rather than a meta-analysis.) 

Study Effect No. of pupils Notes 
 size   

Jerrim & 0.073 10,114 (in 127 For primary (4,176 pupils in 83 schools), 
Vignoles  schools) the ES is 0.10 with 95% CI [-0.01, 
(2015)   +0.21]; for secondary (5,938 pupils in 44 

   schools) the ES is 0.06 with 95% CI [- 
   0.04 to +0.15], so both are non- 
   significant. When combined in meta- 
   analysis, the overall ES is 0.073 with 
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95% CI [0.004 to 0.142], so just  
significant. 
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6.6 Problem solving 
 

What is the evidence regarding problem solving, inquiry-based learning and 

related approaches in mathematics? 
 

Inquiry-based learning (IBL) and similar approaches involve posing mathematical 

problems for learners to solve without teaching a solution method beforehand. 

Guided discovery can be more enjoyable and memorable than merely being told, 

and IBL has the potential to enable learners to develop generic mathematical skills, 

which are important for life and the workplace. However, mathematical exploration 

can exert a heavy cognitive load, which may interfere with efficient learning. 

Teachers need to scaffold learning and employ other approaches alongside IBL, 

including explicit teaching. Problem solving should be an integral part of the 

mathematics curriculum, and is appropriate for learners at all levels of attainment. 

Teachers need to choose problems carefully, and, in addition to more routine tasks, 

include problems for which learners do not have well-rehearsed, ready-made 

methods. Learners benefit from using and comparing different problem-solving 

strategies and methods and from being taught how to use visual representations 

when problem solving. Teachers should encourage learners to use worked examples 

to compare and analyse different approaches, and draw learnersô attention to the 

underlying mathematical structure. Learners should be helped to monitor, reflect on 

and discuss the experience of solving the problem, so that solving the problem does 

not become an end in itself. At primary, it appears to be more important to focus on 

making sense of representing the problem, rather than on necessarily solving it. 
 

Strength of evidence (IBL): LOW 
 

Strength of evidence (use of problem solving): MEDIUM 
 

Introduction 
 

Problem solving is crucial to the use and application of mathematics in the world 

beyond school (e.g., Hodgen & Marks, 2013; see also ACME, 2011, 2016). As a 

result, problem-solving skills are an important aim of school mathematics education 

as set out in the National Curriculum for England. However, problem solving 

encompasses a range of tasks. At one extreme, any task presented to a student may 

be defined as óa problemô, including, in much of the US literature, óword problemsô, 

which are often direct applications of a given method in a real-world context. At the 

other extreme, problem solving may be understood to take place only when students 

are presented with a task for which they have no immediately applicable method, 

and consequently have to devise and pursue their own approach. 
 

Problem solving and inquiry provoke heated debate concerning how best they 

should be taught and the extent to which learners should master the óbasicsô of 

mathematics first. Nevertheless, as noted in the overview to this document, the 

literature on learnersô development suggests that problem solving is needed for 

learners to develop generic mathematical skills. In this module, we examine the 

evidence relating to these issues and the role of problem solving, inquiry-based 

learning and related approaches in mathematics learning more widely. 
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Findings 
 

We found nine meta-analyses relevant to problem solving (11 originally but two were 

excluded). In addition, we identified one US-focused What Works Clearinghouse 

(WWC) practitioner guide on the teaching of problem solving. The meta-analyses 

address different, but related, constructs, and, in particular, define problem solving in 

very different ways. Eight of the 11 meta-analyses were concerned with approaches 

to teaching, such as inquiry-based learning, problem-based learning, the teaching of 

heuristics, (guided) discovery learning and integrative approaches. The remaining 

three meta-analyses, and the WWC practitioner guide, addressed the use of 

problems and the teaching of problem solving more directly. Hence, we present our 

findings under these two categories: the effects of inquiry-based learning and related 

approaches to teaching, and the use and teaching of problem solving. 
 

The effects of inquiry-based learning and related approaches to teaching 
 

Inquiry-based learning (IBL) and problem-based learning are active learning, 

student-centred teaching approaches in which students are presented with a 

scenario and encouraged to specify their own questions, locate the resources they 

need to answer them, and investigate the situation, so as to arrive at a solution. 

Problems may be located in the real world (i.e., modelling problems) or set in the 

context of pure mathematics. IBL approaches tend to rely on the use of collaborative 

learning (see module on collaborative learning) and it is argued that IBL trains 

learners in skills (such as communication) that are important for life and the 

workplace. It is also argued that discovering information may be more enjoyable and 

memorable than merely receiving it passively (Hmelo-Silver, Duncan, & Chinn, 

2007). 
 

However, it has also been strongly argued that approaches involving minimal 

guidance are less effective than explicit teaching (see module on explicit teaching) 

because they fail to allow for learnersô limited working memory and expect novice 

learners to behave like experts, even though they do not have the necessary bank of 

knowledge to do this (Kirschner, Sweller, & Clark, 2006). Kirschner, Sweller and 

Clark (2006) argue that the ñway an expert works in his or her domain ... is not 

equivalent to the way one learns in that areaò (p. 78), and thus ñteaching of a 

discipline as inquiryò should not be confused with ñteaching of a discipline by inquiryò 

(p. 78, emphasis added). Exploration of a complex environment generates a heavy 

cognitive load that may be detrimental to learning. This is less of a problem for more 

knowledgeable ñexpertò learners, but disproportionately disadvantages low-attaining 

learners; although they may enjoy IBL approaches more, they learn less (p. 82). 
 

In response to this, it has been countered that IBL approaches are not in fact 

minimally guided, as portrayed, and employ extensive scaffolding, which reduces 

cognitive load (Hmelo-Silver, Duncan, & Chinn, 2007). It may also be that cognitive 

load may be well managed if worked examples are used, where learners can be 

invited to reflect on the strategy and tactics of solving the problem, rather than the 

details of the calculations. This has similarities to the neriage phase of the Japanese 

problem-solving lesson, in which ñthe lesson begins when the problem is solvedò 

(Takahashi, 2016; see also the module on metacognition and thinking skills). Solving 
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the problem must not become an end in itself, if the goal is to learn about how to 

solve future (as yet unknown) problems. Teaching problem solving is effective where 

learners are able to transfer their knowledge to different applications. It is known that 

learner disaffection is a huge problem, particularly at key stage 3 (e.g., Nardi et al., 

2003; Brown et al., 2008), and Savelsbergh et al. (2016) provide evidence to suggest 

that innovative IBL approaches can have a positive effect on attitudes, with a neutral 

or positive effect on attainment. 
 

Scheerens et al. (2007) examined school and teaching effectiveness using a wide 

range of studies including observational/correlational studies. In particular, they 

looked at constructivist-oriented learning strategies (constructivist teaching is a term 

commonly used in the US in the 1980s & 1990s and is broadly similar to student-

centred teaching [Simon, 1995]). They compared this to structured, direct teaching 

and teacher-orchestrated classroom management, finding similar, small ESs of 

around 0.1 for all of these. Scheerens et al. commented that: 
 

effective teaching is a matter of clear structuring and challenging presentation 

and a supportive climate and meta-cognitive training. The results indicate that 

these main orientations to teaching are all important, and that effective 

teaching is not dependent on a singular strategy or approach. (p. 131) 
 

This suggests that in ordinary, non-experimental classrooms, the differences 

on attainment between IBL and teacher-centred approaches may not be very 

pronounced, and a judicious balance may be optimal. 
 

Preston (2007) found that student achievement was higher with student-centered 

instruction, in which students actively participated in discussion, than with teacher-

centered instruction, where the teacher did most of the talking (ESs around 0.54). 
 

Becker and Park (2011) found that integrative approaches showed larger ESs at 

primary than at the college level, and the integration of all four parts of ñSTEMò 

gave the largest effect size (0.63). 
 

Gersten et al. (2009) defined a heuristic as ña method or strategy that exemplifies a 

generic approach for solving a problemò (p. 1210). As an example, they suggest the 

following generic approach: ñRead the problem. Highlight the key words. Solve the 

problem. Check your work.ò Heuristics are not problem-specific and can be applied 

to different types of problems, and may involve more structured approaches to 

analysing and representing a problem. Gersten et al. (2009) found a huge ES of 

1.56 for teaching heuristics (compared with 1.22 for explicit instruction). These very 

high ESs are probably inflated because the meta-analysis focused on learners with 

learning disabilities; however, it may be fair to conclude that these findings suggest 

that heuristics could be comparable with explicit teaching in terms of its capacity to 

raise attainment. Explicit teaching and heuristics may be complementary 

approaches, explicit teaching being particularly appropriate for important techniques 

that learners will need to use again and again, and heuristics being vital to help 

learners develop flexibility and the ability to tackle the unknown. 
 

Finally, in a study from the 1980s, Athappilly, Smidchens and Kofel (1983) found small 

ESs in favour of ñmodern mathematicsò (focused on abstract, early-20
th

 century 
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mathematics) relative to traditional mathematics (attainment, 0.24; attitude, 0.12), 

although we observe that this speaks to a rather dated debate. 
 

The use and teaching of problem-solving 
 

As stated above, mathematical problem solving takes place when a learner tackles a 

task for which they do not have a suitable readily-available solution method (NCTM, 

2000). In practice, this means that a classroom task could be regarded as a 

ñproblemò if the teacher has not, immediately prior to the task, taught an explicit 

method for solving it. Typically, guidance on problem solving recommends the use of 

a wide range of problem types (e.g., NCTM, 2000; Woodward et al., 2012). However, 

much of the research literature focuses on word problems. Of the 487 studies 

included in Hembreeôs (1992) meta-analysis, the vast majority focused on standard, 

or routine, word or story problems, which require the solver to translate the story into 

a mathematical calculation, and relatively few examined non-standard problems, for 

which the solver does not have a well-rehearsed and ready-made method. Only one 

study focused on real-world problems and none examined a problem type which 

Hembree terms ópuzzlesô, which require unusual or creative strategies. 
 

Hembree (1992) provided evidence of the efficacy of problem solving (ES = 0.77 

relative to no problems), and found that problem solving is appropriate for students 

at all attainment levels. However, there is considerable variation. There is some 

evidence of a positive impact on students' performance for problem solving with 

instruction over no instruction. Hembree also reported benefits resulting from 

teachers trained in heuristics. From Grade 6 onwards, heuristics training appeared 

to give increasing improvements in problem-solving performance. For example, 

ñ[i]nstruction in diagram drawing and translation from words to mathematics also 

offer large effects toward better performance. Explicit training appears essential; 

these subskills do not appear to derive from practice without direction and oversightò 

(p. 267). He also indicated a strong effect for training learners to represent problems 

(d=1.16), and that physical manipulatives help students to do this. There is some 

evidence to suggest that primary learners may benefit more from representing 

problems than from necessarily solving them or being taught problem-solving 

heuristics. Hembree also found that reading ability does not appear to be a critical 

requirement for problem solving. 
 

Rosli et al. (2014) found varied ESs for problem posing, with some evidence of 

effects on knowledge as well as skills, concluding that problem-posing ñactivities 

provide considerable benefits for: mathematics achievement, problem solving skills, 

levels of problems posed, and attitudes toward mathematicsò. 
 

Sokolowski (2015) explored whether mathematical modelling helps students to 

understand and apply mathematics concepts. They found 13 studies with an ES of 

0.69 and advocated a wider implementation of modelling in school. However, some 

of their ESs are likely to be inflated. Teacher effects are likely to be very strong. 
 

As already noted, we did identify a What Works Clearinghouse (WWC) practitioner 

guide on ñImproving mathematical problem solving in grades 4 through 8ò 
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(Woodward et al., 2012). Their recommendations in relation to problem solving 

include: 
 

1. Prepare and use them in whole-class instruction: The WWC panel 

recommended that problem-solving should be an integral part of the mathematics 

curriculum and that teachers should deliberately choose a variety of problems, 

including both routine (standard) and non-routine (non-standard) problems, and 

considering learnersô mathematical knowledge. When selecting problems and 

planning teaching, teachers should consider issues relating to context or 

language in order to enable learners to understand a problem. 
 
2. Assist students in monitoring and reflecting on the problem-solving 

process: Learners solve mathematical problems better when they regulate their 

thinking through monitoring and reflecting (see metacognition module). The 

panel identified three evidence-based effective approaches: (i) providing prompts 

to encourage learners to monitor and reflect during problem solving, (ii) teachers 

modelling how to monitor and reflect during problem solving, and (iii) using and 

building upon learnersô ideas. 
 
3. Teach students how to use visual representations: The panel identified three  

evidence-based effective approaches: (i) teachers should deliberately select 

visual representations that are appropriate to the problem and for the learners, 

(ii) the use of think-aloud and discussion to teach learners how to represent 

problems, and (iii) demonstrating how to translate visual representations into 

mathematical notation and statements (see manipulatives and representations 

module). 
 
4. Expose students to multiple problem-solving strategies: The panel identified  

three evidence-based effective approaches: (i) teach learners different problem-

solving strategies, (ii) use worked examples to enable learners to compare 

different strategies, and (iii) encourage learners to generate and share different 

problem-solving strategies. 
 
5. Help students recognise and articulate mathematical concepts and notation: 

The panel identified three evidence-based effective approaches: (i) highlight and 

describe relevant mathematical ideas and concepts used by learners during 

problem-solving, (ii) ask learners to explain the steps in worked examples and 

explain why they work, and (iii) help learners to understand algebraic notation 

(see Algebra section of mathematical topics module). 
 

Atkinson et al. (2000) advocate using, for each type of problem, multiple examples, 

where the surface features vary from example to example in order to draw attention 

to a consistent, deeper structure. They stress the active use of worked examples by 

suggesting that learners be required to actively self-explain the solutions, and they 

point out that worked examples are particularly beneficial at the early stages of skill 

development. 
 

Evidence base 
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None of the meta-analyses here are of the highest methodological quality, and the 

most relevant one (Hembree, 1992) is dated. 
 
 

 

The WWC practitioner guidance judged the evidence to be strong for two 

recommendations (monitoring and reflecting, and using visual representations), to 

be moderate for two recommendations (multiple strategies and 

recognition/articulation of mathematical concepts and notation), and to be minimal 

for one recommendation (the preparation and use of problems). 
 

There is a pressing need for an up-to-date meta-analysis looking at problem solving. 

There is also a great need for researchers to develop standardised tests that assess 

problem solving, as using specific researcher-designed tests tends to inflate ESs. 
 

We draw on Gersten (2009) only tangentially, as it is focused on learners with 

learning disabilities, which is likely to inflate ESs. The ESs used are based on small 

sets of studies (k = 4 for heuristics and k = 11 for explicit teaching) and the Q statistic 

is high, meaning that all the variation is not explained. This suggests that the efficacy 

of both explicit teaching and heuristic strategies may be dependent on other factors, 

such as the mathematical topic or context. 
 

Sokolowski (2015) looked at studies in the high school and college age, and the 

vast majority of measures used were researcher-designed, which may have inflated 

the ESs reported. 
 

Directness 
 

Our overall judgment is that the findings of the meta-analyses have moderate 

directness. Despite differences in the US and English curricula, the WWC 

Practice Guide (Woodward et al., 2012) is judged to highlight approaches that 

would be applicable in the English context. 
 

Threat to directness Grade Notes 

Where and when the 2 Studies mostly carried out in the US, where the 
studies were carried  teaching culture is somewhat different from 
out  England. However, a general absence of IBL 

  teaching is a feature of both countries. 

How the intervention 2 Problems of varying definitions quite serious. 
was defined and   

operationalised   

Any reasons for 1 Some studies report for learners with learning 
possible ES inflation  disabilities, which inflates ESs. Frequently 

  researcher-designed tests, which also inflate ESs. 

Any focus on 3  

particular topic areas   

Age of participants 3 Mostly OK. 

   

  65 



Overview of effects 
 

Study Effect size (d) No. of studies Quality Notes 
   judgment  

   (1 low to  

   3 high)  

Savelsberg attitude: 0.35 61 3 Examined the 
h et al. 

attainment: 0.78 40 
 effects of 

(2016) 
 

innovative    

    science and 
    mathematics 
    teaching on 
    student 
    attitudes and 
    achievement. 

Scheerens 0.09 (structured, 165 (structured, 2 Review and 
et al. 

direct, direct, 
 meta-analyses 

(2007) 
 

of school and 
mastery,...); 0.14 mastery,...);  

  

teaching  (constructivist- 542(constructivist  
  

effectiveness.  oriented ...) -oriented ...)  
   

     

Preston 0.56 (primary); 18 2 Examined 
(2007) 0.52 (secondary)   student- 

    centered 
    versus 
    teacher- 
    centered 
    mathematics 
    instruction. 

Athappilly, 0.24 660 (attainment), 2 Very dated 
Smidchens, (achievement), 150 (attitude)  study which 
& Kofel 0.12 (attitude),   compared 
(1983) both in favor of   modern 

 modern   mathematics 
    with traditional 
    mathematics. 

Integrative approaches    

Becker & 0.63 28 1 Examined the 
Park (2011)    impact of 

    interventions 
    aimed at the 
    integration of 
    science, 
    technology, 
    engineering, 
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      and  

      mathematics  

      disciplines.  

Scheerens 0.09 90  2  Review and  

et al.      meta-analyses  

(2007)      of school and  

      teaching  

      effectiveness.  

Problem solving       

Hembree 0.77 487  2  Dated study  

(1992)      looked at  

      learning and  

      teaching of  

      problem  

      solving.  

Rosli et al. 0.76 ï 1.31 14  2  Looked at  

(2014)      problem-  

      posing  

      activities.  

Sokolowski 0.69 13  2  Looked at  

(2015)      effects of  

      Mathematical  

      Modelling on  

      Students'  

      Achievement.  

   

Systematic review on the teaching of No of Comment 
problem-solving  studies    

   (k)    

Siegler et al. (2010) (WWC Practice -  Uses What Work 
Guidance): Improving mathematical problem   Clearinghouse standards 
solving in grades 4 through 8       

Prepare problems and use them in whole- 6  Minimal evidence base 
class instruction       

Assist students in monitoring and reflecting 12  Strong evidence base 
on the problem-solving process       

Teach students how to use visual  7  Strong evidence base 
representations       

Expose students to multiple problem-solving 14  Moderate evidence base 
strategies        

Help students recognize and articulate 6  Moderate evidence base 
mathematical concepts and notation      

     67 



References 
 

Meta-analyses 
 

Athappilly, K., Smidchens, U., & Kofel, J. W. (1983). A computer-based meta-analysis 

of the effects of modern mathematics in comparison with traditional 

mathematics. Educational Evaluation and Policy Analysis, 485-493. 
 

Becker, K., & Park, K. (2011). Effects of integrative approaches among science, 
technology, engineering, and mathematics (STEM) subjects on students' 
learning: A preliminary meta-analysis. Journal of STEM Education:  
Innovations and Research, 12(5/6), 23. 

 

Gersten, R., Chard, D. J., Jayanthi, M., Baker, S. K., Morphy, P., & Flojo, J. (2009). 
Mathematics instruction for students with learning disabilities: A meta-analysis 
of instructional components. Review of Educational Research, 79(3), 1202-
1242 

 

Hembree, R. (1992). Experiments and relational studies in problem solving: A meta-
analysis. Journal for Research in Mathematics Education, 242-273. 

 

Preston, J. A. (2007). Student-centered versus teacher-centered mathematics 
instruction: A meta-analysis. Doctoral Thesis, Indiana University of 
Pennsylvania. ProQuest UMI 3289778. 

 

Rosli, R., Capraro, M. M., & Capraro, R. M. (2014). The effects of problem posing 
on student mathematical learning: A meta-analysis. International Education 
Studies, 7(13), 227 

 

Savelsbergh, E. R., Prins, G. T., Rietbergen, C., Fechner, S., Vaessen, B. E., 
Draijer, J. M., & Bakker, A. (2016). Effects of innovative science and 
mathematics teaching on student attitudes and achievement: A meta-analytic 
study. Educational Research Review, 19, 158-172. 

 

Scheerens, J., Luyten, H., Steen, R., & Luyten-de Thouars, Y. (2007). Review and 

meta-analyses of school and teaching effectiveness. Enschede: Department of 

Educational Organisation and Management, University of Twente. 
 

Sokolowski, A. (2015). The Effects of Mathematical Modelling on Students' 
Achievement-Meta-Analysis of Research. IAFOR Journal of Education, 
3(1), 93-114. 

 

Meta-analyses Excluded 
 

Xin, Y. P., & Jitendra, A. K. (1999). The effects of instruction in solving mathematical 
word problems for students with learning problems: A meta-analysis. The 
Journal of Special Education, 32(4), 207-225. [Superseded by Zhang & Xin 
(2012).] 

 

Zhang, D., & Xin, Y. P. (2012). A follow-up meta-analysis for word-problem-solving 
interventions for students with mathematics difficulties. The Journal of 
educational research, 105(5), 303-318. [Focus on learning difficulties.] 

 

Systematic review 
 

Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from 
Examples: Instructional Principles from the Worked Examples Research. 

 
 
 

68 



Review of Educational Research, 70(2), 181-214.  
doi:10.3102/00346543070002181 

 

Woodward, J., Beckmann, S., Driscoll, M., Franke, M. L., Herzig, P., Jitendra, A., 

Koedinger, K. R.. Ogbuehi, P. (2012). Improving mathematical problem 

solving in grades 4 through 8: A practice guide (NCEE 2012-4055). 

Washington, DC: National Center for Education Evaluation and Regional 

Assistance, Institute of Education Sciences, U.S. Department of Education. 
 

Other references 
 

Advisory Committee on Mathematics Education [ACME]. (2011). Mathematical 
Needs: Mathematics in the workplace and in Higher Education. London: Royal 
Society. 

 

Advisory Committee on Mathematics Education [ACME]. (2016). Problem solving in 
mathematics: realising the vision through better assessment. London: Royal 
Society. 

 

Brown, M., Brown, P., & Bibby, T. (2008). ñI would rather dieò: Attitudes of 16 year-
olds towards their future participation in mathematics. Research in 
Mathematics Education, 10(1), 3-18. 

 

Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and 

achievement in problem-based and inquiry learning: A response to Kirschner, 

Sweller, and Clark (2006). Educational psychologist, 42(2), 99-107. 
 

Hodgen, J., & Marks, R. (2013). The Employment Equation: Why our young people 
need more maths for todayôs jobs. London: The Sutton Trust. 

 

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during 
instruction does not work: An analysis of the failure of constructivist, 
discovery, problem-based, experiential, and inquiry-based  
teaching. Educational psychologist, 41(2), 75-86. 

 

Nardi, E., & Steward, S. (2003). Is mathematics T.I.R.E.D? A profile of quiet 
disaffection in the secondary mathematics classroom. British Educational 
Research Journal, 29(3), 345-367. 

 

National Council of Teachers of Mathematics (NCTM) (2000). Principles and 
Standards for School Mathematics. Reston, VA: NCTM. 

 

Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist 
perspective. Journal for Research in Mathematics Education, 26, 114 

 

Takahashi, A. (2016). Recent Trends in Japanese Mathematics Textbooks for 
Elementary Grades: Supporting Teachers to Teach Mathematics through 
Problem Solving. Universal Journal of Educational Research, 4(2), 313-319. 

 
 
 
 
 
 
 
 
 
 
 
 

 

69 



6.7 Peer and cross-age tutoring 
 

What are the effects of using peer and cross-age tutoring on the learning 
of mathematics? 
 

Peer and cross-age tutoring appear to be beneficial for tutors, tutees and teachers 

and involve little monetary cost, potentially freeing up the teacher to implement other 

interventions. Cross-age tutoring returns higher effects, but is based on more limited 

evidence. Peer-tutoring effects are variable, but are not negative. Caution should be 

taken when implementing tutoring approaches with learners with learning difficulties. 
 

Strength of evidence: MEDIUM 
 

Definitions 
 

Cross-age tutoring involves an older learner (in a higher year) working with a 
younger learner, whereas peer-tutoring involves two learners of the same age 
working together, one in the role of tutor, the other as tutee. Gersten (2009) noted in 
his review that, although studies of peer-tutoring date back 50 years, it is still often 
regarded as a relatively novel approach. 
 

Findings 
 

We found no meta-analyses that examined peer or cross-age tutoring exclusively in 
the context of mathematics. Within meta-analyses considering a broad range of 
instructional interventions in mathematics, cross-age and peer-tutoring were 
considered in two analyses and peer-tutoring solely in a further seven. Five of these 
analyses focused on interventions for low-attaining or SEND learners. We also 
include one meta-analysis looking at peer-tutoring in general, with mathematics as 
a moderator, so we draw on 10 meta-analyses of cross/peer-tutoring in total. 
 

The pooled ES for cross-age tutoring on general learners in mathematics (as tutees) 
is 0.79 (Hartley, 1977). For learners with LD this rises to 1.02 (Gersten et al., 2009), 
although this result should be interpreted with caution, as it is based on only two 
studies and a restricted range of learners. Cross-age tutoring has been repeatedly 
reported as the most effective form of tutoring, but may be difficult to organise. 
Training learners as tutors improves the effectiveness of tutoring interventions, but 
effectiveness can vary, particularly with EAL, SEN and low-attaining learners (Lloyd 
et al., 2015). 
 

Pooled ESs for peer-tutoring on general learners in mathematics (as tutees) range 
from 0.27 to 0.60. Where moderator analyses were conducted, results are either 
significantly higher for mathematics or show no significant difference between 
mathematics and other subjects. In one meta-analysis (Leung, 2015), a greater 
range of subjects was examined ï physical education, arts, science and 
technology and psychology ï and it appears that these subjects return higher ESs 
than do mathematics and reading, although there were many more studies of 
mathematics and reading. 
 

Two meta-analyses report similar ESs on general learners as tutors of 0.58 and 
0.62 (Hartley, 1977; Cohen, Kulik and Kulik, 1982). For low-attaining learners, ESs 
of peer-tutoring (tutee and tutor combined) are 0.66 and 0.76 (Baker, Gersten & 
Lee, 2002; Lee, 2000). However, for LD leaners ESs vary considerably from -0.09 
(Kroesbergen & Van Luit, 2003) ï although this should be treated with significant 
caution due to a range of methodological factors ï to 0.76 (Lee, 2000). 
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Overall, the meta-analyses suggest that although peer-tutoring results are variable, 
the approach is not damaging for the general population or low-attaining learners, 
with all reported ESs being positive. Caution should be taken in implementing peer-
tutoring with very weak LD learners, who may struggle with any form of peer-
collaborative working and may reap more benefit from cross-age tutoring. Tutors 
require training and support, and tutoring situations need structure (Baker et al., 
2002; Gersten, 2009). Lloyd et al.ôs (2015) review notes that the tutor (learner) 
training for óShared Mathsô focussed on how to understand and respond to 
mathematical questions (as opposed to general tutor training), and it may be that a 
mathematical focus to the training is important. Kroesbergen & Van Luit (2003) 
found the effects of peer-tutoring to be less than those of other interventions, which 
they suggest may be due to peers being less capable than teachers of perceiving 
other learnersô mathematical needs. Baker et al. (2002), Hartley (1977) and Othman 
(1996) all conclude that peer-tutoring is beneficial for tutors (who develop 
responsibility and a deeper understanding of the material), tutees (who are less 
reluctant to ask questions of a peer) and teachers (who are freed up for other tasks), 
and involves little monetary cost (WSIPP, 2017). 
 

Evidence base 
 

Our findings come from eight meta-analyses which address peer-tutoring and two 
which address both cross-age tutoring and peer-tutoring. In every case, these 
findings are sub-sets of a wider meta-analysis. The two meta-analyses examining 
cross-age tutoring synthesised a total of 32 studies (note that Gersten et al. [2009] 
included only two of these 32 studies) and covered the date period 1962 to 2003. 
The 10 meta-analyses examining peer-tutoring synthesised a total of 299 studies 
(including studies outside of mathematics) and covered the date period 1961 to 
2012. As discussed above, the ESs across the studies for peer-tutoring show some 
variability and a lot of the variation is not understood. The included meta-analyses 
predominantly have medium or high quality ratings. Although there is a fairly high 
degree of overlap in the included studies within each full meta-analysis (ranging from 
39% to 68% for all post-2000 meta-analyses), the authors do not provide the 
information needed to ascertain the degree of overlap in included studies related to 
peer-tutoring, and there appear to be few robust studies in this area. 
 

With regard to the comparison between mathematics and other subjects, Leungôs 
(2015) meta-analysis synthesised far fewer studies in physical education, arts, 
science and technology and psychology than in mathematics (k=3 to k=6 compared 
with 20 studies in mathematics and 31 in reading).  

Meta-analysis k (for tutoring) Quality Date Range 

Baker, Gersten, & Lee (2002) 6 2 1982-1999 

Chen (2004) 5 3 1977-2003 

Cohen, Kulik & Kulik (1982) 65 overall (11 2 1961-1980 
 for   

 mathematics)   

Gersten et al. (2009) 2 (cross-age) 3 1982-2003 

 6 (peer)   
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Hartley (1977) 29 (cross-age 2 1962-1976 
 and peer   

 combined)   

Kroesbergen & Van Luit (2003) 10 2 1985-2000 

Lee (2000) 10 2 1971-1998 

Leung (2015) 72 (20 for 3 pre-2012 
 mathematics)   

Othman (1996) 18 1 1970-1992 

Rohrbeck et al. (2003) 90 overall (25 3 1974-2000 
 for   

 mathematics)   

Directness    
 

In contrast to other forms of collaborative learning, cross-age and (particularly) peer-
tutoring interventions are not in the main delivered through particular structured 
programmes. 
 

These findings are based on studies which are predominantly located in the US. 
Despite cultural differences, we judge that the findings may be transferable to the 
English context. The variation in the effects suggests that the implementation of 
peer-tutoring may be crucial to its efficacy. One recent trial at primary mathematics in 
England showed no effect for a cross-age tutoring intervention (Lloyd et al., 2015). 
 

Where the meta-analyses reviewed in the Education Endowment Foundation toolkit 
(Higgins et al., 2013) focus on mathematics and meet our inclusion criteria, we have 
included them here. Higgins et al. (2013) report a range of ESs for peer-tutoring in 
general (d = 0.35 to d = 0.59, based on five meta-analyses published between 1982 

and 2014),
2
 for the effects of peer-tutoring on tutors and tutees (d = 0.33 & 0.65 and to 

d = 0.40 & 0.59, respectively, based on two meta-analyses published in 1982 and 
1985), and cross-age tutoring (d = 1.05, based on one meta-analysis published in  
2010). Given the extent of this evidence base and the need to understand 
implementation better, there may be some value in synthesising the results of 
these meta-analyses, in particular to identify potential factors that may aid or hinder 
the effective implementation of peer-tutoring.  

Threat to directness Grade Notes 

Where and when the 2 Studies mostly carried out in the US, where the 
studies were carried  teaching culture is somewhat different from 
out  England. 

How the intervention 3  

was defined and   

operationalised   

Any reasons for 3  

possible ES inflation   
 
 
 
 
 
2 One of the meta-analyses was based on single-subject designs and is not reported here. 
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Any focus on 3     

particular topic areas      

Age of participants 3     

Overview of effects      

Meta-analysis Effect  No of Comment  

 Size  studies   

 (d)  (k)   

Learners in general      
    

Effect of cross-age tutoring on tutees   
      

Hartley (1977) 0.79  29 No CIs given  

    k=29 is for all types of tutoring  

    combined; breakdown of number  

    of studies for cross/peer and  

    tutor/tutee not given.  

Effect of peer-tutoring on tutees     
      

Cohen, Kulik & Kulik 0.60  18 No CIs given  

(1982)    Reading ES=0.29 (k=30)  

    Other subjects ES=0.30 (k=4)  

Hartley (1977) 0.52  17 No CIs given  

   effect k=29 for all types of tutoring  

   sizes combined; breakdown of number  

    of studies for cross/peer and  

    tutor/tutee not given.  

Leung (2015) 0.34  20 Overall ES= 0.37 [0.29, 0.45] for  

 [0.27,   the mixed effects model  

 0.41]   Reading ES=0.34 [0.31, 0.38]  

    (k=31)  

    N.B. while ESs for maths and  

    reading are similar, there is a  

    significant degree of unexplained  

    variation.  

    Other subjects (all with small k):  

    Language ES= 0.15 [0.05, 0.25]  

    (k=6)  

    Science & technology ES= 0.45  

    [0.37, 0.53] (k=6)  

    Physical Education ES= 0.90  

    [0.72, 1.07] (k=4)  

    Arts ES= 0.82 [0.73, 0.91] (k=4)  

Othman (1996) 0.30  18   
      

Rohrbeck et al. (2003) 0.27  25 Overall ES=0.33 [0.29, 0.37],  

 [0.19,   Reading ES=0.26 [0.19, 0.33]  

 0.34]   (k=19), the authors conclude that  

    no significant differences in ES  

    were found among PAL  

    interventions implemented in  

    mathematics and reading.  
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Effect of peer-tutoring    

on tutors    

Cohen, Kulik & Kulik 0.62 11 No CIs given 
(1982)   Reading ES=0.21 (k=24) 
Effect of tutoring (peer and cross-age combined) on tutors 

    

Hartley (1977) 0.58 18 No CIs given. ES overall for 
  effect tutoring (peer and cross-age 
  sizes combined) on tutees was 0.63 
   k=29 is for all types of tutoring 
   combined; breakdown of number 
   of studies for cross/peer and 
   tutor/tutee not given. 

Low attaining learners      
Effect of peer-tutoring on low attaining learner achievement (tutor and 
tutee combined)  

Baker, Gersten, & Lee 0.66 6 The magnitude of effect sizes 
(2002) [.42,  was greater on computation than 

 .89]  general maths ability. The 
   average effect size on 
   computation problems was .62 
   (weighted), which was 
   significantly greater than zero. 
   On general maths achievement, 
   the two effect sizes were .06 and 
   .40, producing a weighted mean 
   of .29 that was not significantly 
   different from 0. 

Lee (2000) 0.76 6  

 [0.19,   

 1.34]   

Learners with learning disabilities or special educational needs 
   

Effect of LD cross-age tutoring on tutees  
    

Gersten et al. (2009) 1.02 2  

 [0.57,   

 1.47]   

Effect of LD peer tutoring on tutees  
    

Chen (2004) 0.56 5 Results for group-design studies. 
   Minimum ES=0.39, Maximum ES 
   =1.47 
   No CIs reported. 

Gersten et al. (2009) 0.14 [- 6  

 0.09,   

 0.32]   

Kroesbergen & Van -0.09 10 peer The reported effect size of 0.87 is 
Luit (2003)  tutoring; compared to a ñconstructedò 

  51 in control group effect of 0.96. This 
  control constructed control consists of 
   the controls for all non-peer 
   tutoring interventions combined. 
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This constructed control group 
may then represent ñbusiness as 
usualò. Kroesbergen & Van Luit 
concludes that peer-tutoring has 
no effect. The meta-analysis 
aggregates experimental (with 
and without pre-tests) and single 
cases, therefore should be 
treated with caution.  

Effect of peer-tutoring on LD learner achievement (tutor and tutee combined)  

Lee (2000) 0.76 [- 4  

 1.10,   

 2.62]    
Effect of Peer-Assisted Learning Strategies peer-tutoring program on 
general (K-6) learners  

U.S. Department of Averag 1 WWC report (i.e. not a full meta- 
Education, IES WWC e  analysis) with only one study 
(2013) improv  which met the WWC 

 ement  methodological and reporting 
 index  standards. 
 of 2  Study found no discernible effect 
 [range:  on mathematics achievement. 
 -1 to 6]   
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6.8 Misconceptions 
 

What is the evidence regarding misconceptions in mathematics? 
 

Studentsô misconceptions arise naturally over time as a result of their attempts to 

make sense of their growing mathematical experience. Generally, misconceptions 

are the result of over-generalisation from within a restricted range of situations. 

Misconceptions should be viewed positively as evidence of studentsô sense 

making. Rather than confronting misconceptions in an attempt to expunge them, 

exploration and discussion can reveal to students the limits of applicability 

associated with the misconception, leading to more powerful and extendable 

conceptions that will aid studentsô subsequent mathematical development. 
 

Strength of evidence: MEDIUM 
 

Findings 
 

A misconception is ña student conception that produces a systematic pattern of 
errorsò (Smith, diSessa, & Roschelle, 1994, p. 119) and leads to perspectives that 
are not in harmony with accepted mathematical understanding. Much research 
has documented common misconceptions and misunderstandings which students 
develop in different mathematics topics. 
 

Misconceptions arise out of studentsô prior learning, either from within the 
classroom or from the wider world. When viewed from the perspective of the 
studentsô previous experience, misconceptions make sense, because they explain 
some set of phenomena within a restricted range of contexts: 
 

Most, if not all, commonly reported misconceptions represent knowledge 
that is functional but has been extended beyond its productive range of 
application. Misconceptions that are persistent and resistant to change are 
likely to have especially broad and strong experiential foundations. (Smith, 
diSessa, & Roschelle, 1994, p. 152) 

 

For example, the ñmultiplication makes bigger, division makes smallerò conception is 
an accurate generalisation for numbers greater than 1. It is only when extended 
beyond this set of numbers that this conception becomes a misconception. 
 

Misconceptions create problems for students when they lead to errors in calculation 
or reasoning. Typically, they are benign for a time, but, as subsequent mathematical 
concepts appear and have to be taken account of (e.g., numbers less than or equal 
to 1), they become problematic. Teachers need to take studentsô misconceptions 
seriously, and not dismiss them as nonsensical, by thinking about what prior 
experiences could have led to the studentsô particular misconceptions. As Smith, 
diSessa and Roschelle (1994, p. 124) put it, ñmisconceptions, especially those that 
are most robust, have their roots in productive and effective knowledgeò, and this is 
why they can be quite stable, widespread and resistant to change. 
 

It is often assumed that misconceptions must be uncovered and then confronted, so 
as to ñovercomeò them and replace them with correct concepts. Through cognitive 
conflict, the disparity between mathematical reality and what the student believes 
will become explicit, and then students will modify their beliefs accordingly. 
However, this is sometimes not effective. Students will often actively defend their 
misconceptions, and teaching that simply confronts students with evidence that they 
are wrong is thought by Smith, diSessa and Roschelle (1994, p. 153) to be 
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ñmisguided and unlikely to succeedò. Instead, it is necessary to explore how the 
misconception has arisen, the ñpartial truthò that it is built on, when it is valid and 
when and why it is not, in order to assist students, over a period of time, to 
generalise more substantially, so as to arrive at different and more useful 
conceptions of mathematics. 
 

Evidence base 
 

Smith, diSessa and Roschelle (1994) in their classic paper ñMisconceptions 
reconceivedò summarised knowledge about misconceptions and interpreted this from 
a constructivist perspective. 
 

Many have catalogued and summarised studentsô specific mathematical 
misconceptions in detail (e.g., Hart et al., 1981; Ryan & Williams, 2007). Reynolds 
and Muijs (1999) discussed awareness of misconceptions in the context of effective 
teaching of mathematics. 
 

Directness 
 

We have no concerns over the directness of these findings. 
 

References 
 

Hart, K. M., Brown, M. L., Kuchemann, D. E., Kerslake, D., Ruddock, G., & 
McCartney, M. (1981). Childrenôs understanding of mathematics: 11-16. 
London: John Murray. 

 

Reynolds, D., & Muijs, D. (1999). The effective teaching of mathematics: A review of 
research. School Leadership & Management, 19(3), 273-288. 

 

Ryan, J., & Williams, J. (2007). Childrenôs mathematics 4-15: Learning from errors 
and misconceptions. McGraw-Hill Education. 

 

Smith III, J. P., diSessa, A. A., & Roschelle, J. (1994). Misconceptions reconceived:  
A constructivist analysis of knowledge in transition. The Journal of the 
Learning Sciences, 3(2), 115-163. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

78 



6.9 Thinking skills, metacognition and self-regulation 
 

To what extent does teaching thinking skills, metacognition and/or 
self-regulation improve mathematics learning? 
 

Teaching thinking skills, metacognition and self-regulation can be effective in 

mathematics. However, there is a great deal of variation across studies. 

Implementing these approaches is not straightforward. The development of thinking 

skills, metacognition and self-regulation takes time (more so than other concepts), 

the duration of the intervention matters, and the role of the teacher is important. One 

thinking skills programme developed in England, Cognitive Acceleration in 

Mathematics Education (CAME), appears to be particularly promising. Strategies 

that encourage self-explanation and elaboration appear to be beneficial. There is 

some evidence to suggest that, in primary, focusing on cognitive strategies may be 

more effective, whereas, in secondary, focusing on learner motivation may be more 

important. Working memory and other aspects of executive function are associated 

with mathematical attainment, although there is no clear evidence for a causal 

relationship. A great deal of research has focused on ways of improving working 

memory. However, whilst working memory training improves performance on tests 

of working memory, it does not have an effect on mathematical attainment. 
 

Strength of evidence: MEDIUM 
 

Definitions 
 

This question addresses one of the key aspects of the development of mathematical 
competency as discussed in Section 3. Metacognition is broadly defined as óthinking 
about thinkingô and the understanding of oneôs thinking and learning processes. Self-
regulation is related to metacognition and is defined as the dispositions (such as 
resilience, perseverance and motivation) to put oneôs cognitive and metacognitive 
processes into practice. Cognitive strategies include aspects such as organisational 
skills, serving as pre-requisites for later metacognitive processes. 
 

Thinking skills is a looser but related notion. Thinking skills interventions can be 
defined as approaches or programmes that are designed to develop learnersô 
cognitive, metacognitive and self-regulative knowledge and skills. Typically, 
thinking skills programmes focus either on generic thinking skills or on developing 
thinking skills in the context of a particular curriculum area, such as mathematics. 
 

Executive function is ñthe set of cognitive skills required to direct behavior toward the 
attainment of a goalò (Jacob & Parkinson, 2015, p. 512). Working memory (WM) is 
commonly thought of as a subcomponent of executive function. It involves the brainôs 
ñtemporary storageò while engaging in ñcomplex cognitive tasksò (Melby-Lerväg & 
Hulme, 2013, p. 270). A number of models and components of WM have been 
proposed. 
 

Findings 
 

Teaching thinking skills, metacognition and self-regulation can be effective in 
mathematics. We found a large number of recent meta-analyses in this area with a 
wide range of effects, some very large. For thinking skills, metacognitive and self-
regulative interventions aimed at increasing attainment in mathematics ï or aspects 
of mathematics ï we found ESs ranging from 0.22 (instructional explanations / 
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worked examples, Wittwer & Renkl, 2010) to 0.96 (self-regulation interventions in 
primary mathematics, Dignath & Büttner, 2008). 
 

However, there is ñconsiderable variationò (Higgins et al., 2005, p.34) across 
approaches and studies. Implementing these approaches is not straightforward. The 
development of thinking skills, metacognition and self-regulation takes time and the 
role of the teacher is important in ensuring a careful match between the approach, 
the learner and the subject (Higgins et al., 2005). Laiôs (2011) review recommends 
that learners are exposed to a variety of explicitly taught strategies, urging teachers 
to promote metacognitive processes through modelling or scaffolding a strategy 
while simultaneously verbalizing their thinking or asking questions of the learners to 
highlight aspects of the strategy. Teachers need to be careful that the strategy use 
does not detract from the mathematical task (Rittle-Johnson et al., 2017). 
Regardless of the strategy being taught explicitly, learners need significant time to 
imitate, internalise and independently apply strategies, and they need to experience 
the same strategies being used repeatedly across many lessons (Ellis et al., 2014). 
These findings are supported by two meta-analyses. Dignath & Büttner (2008) found 
that, at primary school level, ESs increased with the number of training sessions, 
while Xin & Jitendra (1999) found that long-term interventions produced 
substantially higher ESs (d=2.51 for long-term interventions compared with d=0.73 
for intermediate-length interventions). It is likely that the time required is significantly 
greater than for other concepts, without the ódrop-offô seen with approaches such as 
the use of manipulatives. 
 

One thinking skills programme developed in England, Cognitive Acceleration in 
Mathematics Education (CAME), appears to be particularly promising. Higgins et 
al.ôs (2005) synthesis focused on the effects of thinking skills programmes and found 
that thinking skills approaches may have a greater effect on attainment in 
mathematics (and science) than they do on reading (ES for mathematics d=0.89 
compared to English d=0.48), although the difference was not significant. Higgins et 
al. included four studies of the effects of Cognitive Acceleration, a programme that 
has been extensively used in England, and found an immediate effect on attainment 
of d=0.61. However, these studies were set either in science or in early-years 
education. Several studies of the CAME programme show very promising results. 
One quasi-experimental study of the CAME programme delivered in Years 7 and 8 
found a relatively large effect of d=0.44 on GCSE grades in mathematics three years 
after the end of the intervention (Shayer & Adhami, 2007). Another study of the 
CAME programme delivered in Years 1 and 2 found a medium effect of d=0.22 on 
Key Stage 2 mathematics. Finally, a study of the programme delivered in Years 5 
and 6 found an immediate effect on Key Stage 2 mathematics of d=0.26. 
 

Strategies that encourage elaboration and self-explanation appear to be beneficial. 
Elaboration involves students explaining mathematics to someone else, often in a 
collaborative learning situation, drawing out connections with previous learning 
(Kramarski & Mevarech, 2003). Self-explanation involves learners elaborating for 
themselves, rather than for a public audience. Both have links to the use of worked 
examples (providing a detailed example of a solution to a task/problem which is 
then used on similar tasks/problems). Wittwer & Renkl (2010) found that in 
mathematics, worked examples, in combination with instructional guidance, 
appeared to be effective, with the ES for mathematics d = 0.22 (95%CI 0.06, 0.38), 
and to be effective in developing conceptual understanding. However, providing 
instructional guidance appears to be no better than encouraging self-explanation. 
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There is some evidence to suggest that, in primary, focusing on cognitive strategies 
may be more effective, whereas, in secondary, focusing on learner motivation may 
be important. Dignath et al.ôs (2008) meta-analysis aimed to better understand the 
variation in effects and to investigate the impact of various characteristics of different 
approaches and teaching methods. They found greater effects for self-regulation 
interventions in mathematics at primary (higher than reading/writing), d=0.96 (95%CI 
0.71, 1.21) than at secondary, d=0.23 (95%CI 0.07, 0.38), which was lower than 
reading. Coding interventions as cognitive, metacognitive, or motivational, they found 
that cognitive approaches had the strongest effects in primary mathematics, whereas 

for secondary mathematics, motivational approaches had a greater effect.3 At 

secondary level, effects were also stronger where group work was used as a 
teaching approach. 
 

In response to the variation noted earlier, we found repeated calls across the 
syntheses for more robust studies, for clear definitions of terms, and for stronger 
outcome measures relying less on self-reported scales (Gascoine et al., 2017). 
Furthermore, Higgins et al. (2005) note the need for improved reporting, ensuring 
that methodological details and results crucial to later systematic syntheses are 
not omitted at the reporting or publishing stages. 
 

Executive function ï particularly working memory ï is known to be associated with 
mathematics attainment. The overall correlation between executive function and 
mathematical attainment is r = 0.31, 95% CI [0.26, 0.37] (Jacob & Parkinson, 2015), 
while overall correlations between WM and mathematical attainment are reported by 
Jacob & Parkinson (2015) as r = 0.31, 95% CI [0.22, 0.39] and by Peng et al. (2016) 
as r = .35, 95% CI [.32, .37]. Although executive function / working memory appear 
to be correlated, both with general attainment and with mathematics, there is no 
evidence of a causal relationship (Jacob & Parkinson, 2015, p. 512; see also Friso-
van den Bos et al., 2013). Across mathematical domains, Peng et al. (2016) found 
the strongest correlations for WM with word-problem solving. 
 

In terms of Working Memory Training (WMT), Jacob & Parkinson (2015) found across 

five intervention studies no compelling evidence that impacts on executive function 

lead to increases in academic achievement. In mathematics, Melby-Lerväg  
& Hulme (2013) found small and non-significant effects of WMT on arithmetic 
(d=0.07), while Schwaighofer et al. (2015), building on Melby-Lerväg & Hulmeôs 
analysis, found little evidence of short-term (d=0.09) or long-term (0.08) transfer of 
WMT to mathematical abilities. 
 

Finally, there is a need for collaborations between mathematical cognition, learning 
scientists and mathematics educators in order to make sense of the growing, and 
somewhat varied, corpus of research in this area. There is a need to understand 
whether there is a causal link between executive function and mathematics 
achievement, prior to interventions designed to improve executive function in school-
age children being piloted and scaled-up.  
 
 
 
 
 

 

3 Cognitive strategies involve rehearsal, elaboration and organisation skills such as underlining, summarising and 
ordering (Dignath et al., 2008, p.236). They are essentially the linchpins of the later metacognitive strategies of 
planning, monitoring and evaluating, and a part of the continuum of childrenôs metacognitive development, which 
is known to be age-related (Ellis et al., 2012; Gascoine et al., 2017; Lai, 2011). 
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Evidence base 
 

On the teaching of thinking skills, metacognition and/or self-regulation, we drew on 
six meta-analyses and one systematic review. These six meta-analyses synthesised 
a total of 233 studies published between 1981 and 2015 and predominantly are 
judged to be of high methodological quality. There was little or no overlap in the 
studies included when judged against the largest meta-analysis (Dignath & Büttner, 
2008). 
 

On working memory training, we drew on two meta-analyses, both of high 
quality, with no overlap in the studies synthesised. 

 

Meta-analysis k Quality Date % overlap with 
(Metacognition)   Range Dignath & Büttner 

    (2008) 

Dignath & Büttner 49 2 1992-2006 N/A 
(2008) primary    

 25    

 secondar    

 y    

Donker et al. (2014) 58 3 2000-2012 7% (4/58) 

Higgins et al. 29 3 1984-2002 3% (1/29) 

(2005)     

Rittle-Johnson et al. 26 2 1998-2015 4% (1/26) 
(2017)     

Wittwer & Renkl 21 3 1985-2008 0% (0/21) 
(2010)     

Xin & Jitendra (1999) 25 3 1981-1995 0% (0/25) 

 

Meta-analysis k Quality Date 
(Working memory)   Range 

Melby-Lerväg & 23 3 2002-2011 
Hulme (2013)    

Schwaighofer et al. 47 3 2002-2014 
(2015)    

 

Directness 
 

Our overall judgement is that the available evidence is of generally high directness. 

Threat to directness Grade Notes  

Where and when the 3 Included studies are worldwide, but many  

studies were carried  come from the UK or US. For example, in  

out  Higgins et al.ôs meta-analysis, over half the  

  included studies were from the UK or US.  
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How the intervention 2 Definition of variables and explanation of 
was defined and  strategies may be a threat to directness. 
operationalised  Multiple models and constructs exist and it is 

  not always clear where the boundaries to a 
  particular construct lie. 

Any reasons for 3  

possible ES inflation   

Any focus on 3  

particular topic areas   

Age of participants 3 Metacognitive thinking is now accepted as 
  beginning in children as young as three, and 
  the studies included here reflect the full age- 
  range under consideration. 
 

Overview of effects 

Meta-analysis Effec No of Comment 
 t Size studies (k)  

 (d)   

 Interventions and Training Effects 
    

Thinking Skills Intervention on Mathematical Attainment 

Higgins et al. (200 0.89 k=9 The overall cognitive effect size was 
 [0.50,  0.62 (k=29). 
 1.29]  The overall effect size (including 
   cognitive, curricular and affective 
   measures) was 0.74. 
   There was relatively greater impact 
   on tests of mathematics (0.89) and 
   science (0.78), compared with 
   reading (0.4). 

Self-Regulation Interventions on Mathematics Attainment 

Dignath & 0.96 49 primary Higher effect than for reading 
Büttner (2008); [0.71, 28 (0.44). 
Primary 1.21] mathematic ñEffect sizes for mathematics 
mathematics  s (primary & performance at primary school were 

  secondary higher: 

  combined) for interventions focusing on 
   cognitive strategy instruction 
   (reference category) rather than 
   on metacognitive reflection (B=- 
   1 .08) 

   for interventions with a large 
   number of sessions (B=0.05)ò 
   (p. 247) 

Dignath & 0.23 25 Lower effect than for reading (0.92). 
Büttner (2008); [0.07, secondary ñEffect sizes representing 
Secondary 0.38] 28 mathematics performance at 
mathematics  mathematic secondary school were higher: 

  s (primary &  
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  secondary if the theoretical background of 
  combined) the intervention focused on 
   motivational (B=0.55) rather 
   than on metacognitive learning 
   theories (reference category). 
   No significant difference was 
   found compared to social- 
   cognitive theories. 

   if group work was not used as a 
   teaching method (constant) 
   rather than if it was used (B=- 
   0.65). 

   with an increasing number of 
   training sessions (B=0.02).ò (pp. 
   247-8) 

Self-Explanation Prompts on Mathematical Attainment  

Rittle-Johnson et 0.28 19 Immediate post-test. Delayed post- 
al. (2017); [0.07  test ES = 0.13 [ī0.13 0.39] 
procedural 0.49]   

knowledge    

Rittle-Johnson et 0.33 16 Immediate post-test. Delayed post- 
al. (2017); [0.09  test ES = -0.05 [ī0.29 0.19] 
conceptual 0.57]   

knowledge    

Rittle-Johnson et 0.46 9 Immediate post-test. Delayed post- 
al. (2017); [0.16  test ES = 0.32 [0.02 0.63] 
procedural 0.76]   

transfer    

Metacognition and self-regulation on Mathematical Attainment 

Donker et al. 0.66 58 Studies, Overall attainment = .66 
(2014)  44 (SE = .05, 95%CI .56 to .76) 

  intervention Writing = 1.25 
  s in Reading = 0.36 
  mathematic These domains differed in terms of 
  s which strategies were the most 
   effective in improving academic 
   performance. However, 
   metacognitive knowledge 
   instruction appeared to be valuable 
   in all of them. 
 
Instructional Explanations (Worked Examples) on Mathematics Attainment 

Wittwer & Renkl 0.22 14 The weighted mean (across 
(2010) [0.06,  subjects) effect size of 0.16 [0.03, 

 0.38]  0.30] was small but statistically 
   significant, p=0.04. Two other 
   subjects were examined (science 
   and instructional design) ï 
   mathematics was significantly 
   different from instructional design 
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but not from science. Science: 0.21 
[-0.02, 0.44] 
Instructional design: -0.28 [-0.71, 
0.16]  

Strategy training (incorporating explicit instruction and/or 
metacognitive strategies) in word-problems in mathematics for 
students with learning disabilities  

Xin & Jitendra 0.74 12 This compares with other forms of 
(1999) 95%  instruction: 

 CI  Representation (k=6) d=1.77, 
 [0.56,  95%CI [1.43, 2.12] 

 0.93]  CAI (k=4) d=1.80 95%CI [1.27, 
   2.33] 

   Other (k=5) d=0.00 95%CI [- 
   0.26, 0.26] 

Thinking Skills Intervention on Mathematical Attainment 

Higgins et al. (200 0.89 k=9 The overall cognitive effect size was 
 [0.50,  0.62 (k=29). 
 1.29]  The overall effect size (including 
   cognitive, curricular and affective 
   measures) was 0.74. 
   There was relatively greater impact 
   on tests of mathematics (0.89) and 
   science (0.78), than with reading 
   (0.4). 

Working Memory Training on Arithmetic  
    

Melby-Lerväg & H 0.07 7 The mean effect size was small and 
(2013) 95%  nonsignificant. 

 CI [-  All long-term effects of working 
 0.13,  memory training on transfer 
 0.27]  measures were small and 
   nonsignificant. 

    

Transfer effect of WM training to mathematical abilities 
    

Schwaighofer et 0.09 15 This analysis builds on Melby- 
(2015); short-te [-  Lerväg & Hulme (2013), examining 

 0.09,  the near and far transfer of WMT. 
 0.27]   

Schwaighofer et al 0.08 8  

(2015); long-term [-   

 0.12,   

 0.28]   
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7 Resources and Tools 
 

7.1 Calculators 
 

What are the effects of using calculators to teach mathematics? 
 

Calculator use does not in general hinder studentsô skills in arithmetic. When 

calculators are used as an integral part of testing and teaching, their use appears to 

have a positive effect on studentsô calculation skills. Calculator use has a small  
positive impact on problem solving. The evidence suggests that primary students 

should not use calculators every day, but secondary students should have more 

frequent unrestricted access to calculators. As with any strategy, it matters how 

teachers and students use calculators. When integrated into the teaching of mental 

and other calculation approaches, calculators can be very effective for developing 

non-calculator computation skills; students become better at arithmetic in general 

and are likely to self-regulate their use of calculators, consequently making less (but 

better) use of them. 
 

Strength of evidence: HIGH 
 

Findings 
 

Two meta-analyses, Ellington (2003) and Hembree & Dessart (1986), synthesised 
studies of handheld calculator use. Both meta-analyses found that calculator use did 
not hinder studentsô development of calculation skills when tested without 
calculators, and may have had a small positive effect in some areas of mathematics. 
However, when calculators were permitted in the testing as well as the teaching, 
calculator use was found to have a positive effect on studentsô calculation skills. In 
addition, both meta-analyses found small positive effects of calculator use on 
studentsô problem solving. Ellington suggests that the increase in problem-solving 
skills ñmay be most pronounced é when special curriculum materials have been 
designed to integrate the calculator in the mathematics classroomò (p. 456). Both 
meta-analyses found that students taught with calculators had more positive 
attitudes to mathematics. 
 

A large-scale research and development project in England, the Calculator-Aware 
Number (CAN) project provides further evidence in the English context (Shuard et 
al., 1991). In a follow-up study examining the effects of a ñcalculator awareò 
curriculum on students who had experienced calculators throughout their primary 
schooling, Ruthven (1998) found that, compared to a control group, studentsô 
understandings of and fluency with arithmetic were greater. A key paragraph in 
Ruthven (1998) states: 
 

In the post-project schools, pupils had been encouraged to develop and refine 
informal methods of mental calculation from an early age; they had been 
explicitly taught mental methods based on 'smashing up' or 'breaking down' 
numbers; and they had been expected to behave responsibly in regulating 
their use of calculators to complement these mental methods. In the non-
project schools, daily experience of 'quickfire calculation' had offered pupils a 
model of mental calculation as something to be done quickly or abandoned; 
explicit teaching of calculation had emphasised approved written methods; 
and pupils had little experience of regulating their own use of calculators. (pp. 
39-40) 
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In addition, the intervention group students used calculators less often, and 
mental methods more often, than the control group. 
 

Hembree and Dessart (1986) found that, at Grade 4 (Year 5 in England), in contrast 
to other grades, calculator use had a negative effect. This strikes a cautionary note, 
and Hembree and Dessart comment that ñcalculators, though generally beneficial, 
may not be appropriate for use at all times, in all places, and for all subject mattersò 
(p. 25). In an analysis of TIMSS 2007 data, Hodgen (2012) found that, at Year 5, the 
attainment of students in countries where calculator use was unrestricted was 
significantly lower than it was in those countries where calculator use was either 
restricted or banned. However, the reverse was true for Year 9: the attainment of 
students where calculator use was unrestricted was higher than it was for those 
where it was banned. The Leverhulme Numeracy Research Programme also 
identified different effects from different types of calculator use. Brown et al. (2008) 
found that allowing students access to calculators either rarely or on most days was 
negatively associated with attainment. This suggests that calculators should be 
used moderately but not excessively, and for clear purposes, particularly at primary. 
As found in the CAN project (Shuard et al., 1991), calculators need to be used 
proactively to teach students about number and arithmetic alongside the teaching of 
mental and pencil-and-paper methods; students also benefit from learning to make 
considered decisions about when, where and why to use different methods. Indeed, 
in a retrospective analysis of cumulative evidence about CAN, Ruthven (2009) 
argued that how calculators are used and integrated into teaching is crucial. This 
analysis supports a principled approach to the use of calculators, in which students 
are taught, for example, estimation and prediction strategies that they can use to 
check and interpret a calculator display. 
 

The meta-analyses did not distinguish between basic and scientific calculators. 
However, 22 of Ellingtonôs 54 studies (41%) focused on graphic calculators, and 
moderator analysis found that graphic calculators had higher effects for testing with 
calculators, problem-solving and attitudes to maths, although there was 
considerable variation in these effects. 
 

Evidence base 
 

We identified two meta-analyses synthesising a total of 133 studies over the period 

1969-2002: Ellington (2003): 54 studies (methodological quality: high), and Hembree  
& Dessart (1986): 79 studies (methodological quality: medium). Ellington (2003) 
builds explicitly on Hembree & Dessart and takes a very similar theoretical frame. 
The results of the two meta-analyses are consistent, although more weight should be 
placed on Ellingtonôs more recent study, because there have been significant 
changes in the use, availability, functionality and student familiarity of calculators 
since Hembree & Dessartôs search period (1969-1983). A third meta-analysis (Smith,  
1986) was excluded due to extensive overlap with the studies included in Ellingtonôs 
meta-analysis,. 
 

The majority of included studies in Ellingtonôs (2003) meta-analysis examined 
studentsô acquisition of skills as measured by immediate post-tests. Too few 
studies examined retention (through delayed post-testing) or transfer (to calculator 
use in other subject domains) for conclusions to be drawn, and further research is 
needed in these areas. Whilst the findings of the two meta-analyses are consistent, 
Ellingtonôs moderator analysis indicates a relatively high degree of unexplained 
variation. 
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Directness 
 

The majority of the studies included in both Ellingtonôs (2003) and Hembree & 
Dessartôs (1986) meta-analyses were conducted in the US. Nevertheless, these 
findings are judged to apply to the English context, which is supported by the 
evidence from the CAN project (Shuard et al., 1991). Further, CAN suggests some 
general principles that can be applied to the classroom use of calculators, although, 
as Shuard et al. observed, ña calculator-aware number curriculum is much more 
than a conventional number curriculum with calculator use óbolted onô. Nor is it a 
wholly ócalculator-basedô one. é such an approach requires careful planning, 
particularly of curriculum sequences to underpin continuity and progression in 
childrenôs learning.ò (p. 13).  

Threat to directness Grade Notes 

Where and when the 3 The studies in both meta-analyses 
studies were carried out  were conducted in the US. In the 

  absence of reasons to the contrary, 
  these findings are judged to apply to 
  England. A large-scale study at primary 
  provides further weight to this. 

How the intervention was 3 The meta-analyses focus on calculator 
defined and operationalised  use as a general strategy rather than 

  on any particular interventions. The 
  research suggests some general and 
  applicable principles for the use of 
  calculators. 

Any reasons for possible 3  

ES inflation   

Any focus on particular 3 The focus is on calculation and 
topic areas  problem-solving, which are central to 

  the research question. 

Age of participants 3 The meta-analyses cover the 8-13 age 
  range (and beyond). 
 

Overview of effects  

Meta-analysis Effec No of Qual- Comments 
 t Size studies ity  

 (d) (k)    
Effect of calculator use on calculation skills in tests where calculators were 
not permitted  

Ellington (2003) -.02 14 3 Computational 
    aspects of operational 
    skills reported. 
    Ellington found various 
    additional ESs, which 
    vary between g = -.05 
    (conceptual aspects) 
    and g = .17 
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    (operational skills 
    overall). 

Hembree & Dessart (1986) .137 57 2 ES for Grade 4: g = - 
    .152 (k=7, p<.05). Low 
    attainers ES g = -.107 
    (k=13, n.s.) 

Effect of calculator use on calculation skills in tests where calculators were 
permitted     

Ellington (2003) .32 19 3 Operational skills 
    reported. Ellington 
    found various 
    additional ESs, which 
    vary between g = .41 
    (computational 
    aspects) and g = .44 
    (conceptual aspects). 

Hembree & Dessart (1986) .636 29 2 Computational 
    aspects reported; 
    overall operational 
    skills g = .737, but 
    studies found to be 
    heterogeneous. 
Effect of calculator use on problem-solving   

     

Ellington (2003) .22 12 3  
     

Hembree & Dessart (1986) .203 33 2 Operational skills 
    overall for ñotherò 
    grades (i.e., not G4 or 
    G7) of effect on 
    problem-solving 
    without calculators. 
    Various other ESs 
    found that vary 
    between g = .005 and 
    g = .458. ESs for 
    problem solving with 
    calculators higher. 

Effect of calculator use on attitudes to mathematics  
     

Ellington (2003) .20 12 3  
     

Hembree & Dessart (1986) .190 56 2  
     

 

References 
 

Meta-analyses included 
 

Ellington, A. J. (2003). A meta-analysis of the effects of calculators on students' 
achievement and attitude levels in precollege mathematics classes. 
Journal for Research in Mathematics Education, 34, 433-463. 

 

Hembree, R., & Dessart, D. J. (1986). Effects of hand-held calculators in precollege 
mathematics education: A meta-analysis. Journal for research in mathematics 
education, 17(2), 83-99. 

 

91 



Meta-analyses excluded 
 
Ellington, A. J. (2006). The effects of nonȤCAS graphing calculators on student achievement and attitude levels in mathematics: A metaȤanalysis. School 

Science and Mathematics, 106(1), 16-26. [Excluded because very few of the studies covered the 8-12 age range.] 

 

Smith, B.A. (1996). A meta-analysis of outcomes from the use of calculators in 
mathematics education. (Doctoral dissertation, Texas A & M University-
Commerce, 1996). Dissertation Abstracts International, 58(03), 787.  
[Excluded due to overlap with Ellington, 2003: 87.5%] 

 

Other references 
 

Brown, M., Askew, M., Hodgen, J., Rhodes, V., Millett, A., Denvir, H., & Wiliam, D.  
(2008). Individual and cohort progression in learning numeracy ages 5-11: 
Results from the Leverhulme 5-year longitudinal study. In A. Dowker (Ed.), 
Children's Mathematical Difficulties: Psychology, Neuroscience and Education 
(pp. 85-108). Oxford: Elsevier. 

 

Hodgen, J. (2012). Computers good, calculators bad. In P. Adey & J. Dilllon (Eds.), 
Bad Education: Debunking educational myths. Maidenhead: Open University 
Press. 

 

Ruthven, K. (2009). Towards a calculator-aware mathematics curriculum. 
Mediterranean Journal for Research in Mathematics Education, 8(1), 111-124. 

 

Ruthven, K. (1998). The Use of Mental, Written and Calculator Strategies of 

Numerical Computation by Upper Primary Pupils within a 'Calculator-Aware' 

Number Curriculum. British Educational Research Journal, 24(1), 21-42. 
 

Shuard, H., Walsh, A., Goodwin, J., & Worcester, V. (1991). Calculators, children and 
mathematics: The Calculator-Aware Number curriculum. Hemel Hempstead: Simon 
& Schuster. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

92 



7.2 Technology: technological tools and computer-assisted instruction 
 

What is the evidence regarding the use of technology in the teaching 
and learning of maths? 
 

Technology provides powerful tools for representing and teaching mathematical 

ideas. However, as with tasks and textbooks, how teachers use technology with 

learners is critical. There is an extensive research base examining the use of 

computer-assisted instruction (CAI), indicating that CAI does not have a negative 

effect on learning. However, the research is almost exclusively focused on systems 

designed for use in the US in the past, some of which are now obsolete. More 

research is needed to evaluate the use of CAI in the English context. 
 

Strength of evidence (Tools): LOW 
 

Strength of evidence (CAI): MEDIUM 
 

Findings 
 

We identified 11 meta-analyses addressing aspects of technology. Despite this 

relatively large evidence base, we judge the evidence regarding technology to be 

limited. The 11 meta-analyses were published between 1977 and 2017 and synthesise 

studies published between 1967 and 2016. During this period, there have been very 

dramatic changes in the scope, capability, availability and familiarity of technology. The 

term ótechnologyô has expanded to cover a wide range of very different applications and 

devices, each of which may have different potential uses in the teaching and learning of 

mathematics. Several of the meta-analyses aggregated the effects of different uses of 

technology, indicating ESs of d=0.28 in general (Li & Ma, 2010) and d=0.47 for primary 

(Chauhan, 2017). However, the diverse range of technologies synthesised in each of 

these meta-analyses makes interpretation of the effects problematic, beyond a general 

effect for innovation and novelty. In order to address this diversity, we present our 

findings under two categories:  
Technological tools: A vast range of technological hardware and software is used 
in mathematics classrooms in England. This is sometimes referred to as digital 
technology or ICT (information and communication technology), and in this 
module we refer to these as technological tools. The tools addressed in the 
meta-analyses are a subset of these, and include mobile devices, dynamic 
geometry software, exploratory computer environments and educational games.  
Computer-assisted instruction (CAI): CAI covers a broad range of computer-
based systems designed to deliver all or part of the curriculum or to support 
the management of learning by providing assessment and feedback to 
learners. Some CAI is designed to supplement regular teaching, whilst other 
CAI is comprehensive. CAI is intended to be adaptive to the needs of individual 
learners, and one meta-analysis focuses on Intelligent Tutoring Systems [ITS], 
which have óenhanced adaptabilityô and attempt to replicate human tutoring. 

 

Note: Calculators are considered in a separate module, because the evidence base 
is substantial and has a specific focus on calculation and arithmetic. 
 

Technological Tools 
 

Four meta-analyses examined the effects of using technological tools on attainment in 

comparison to non-use, and one meta-analysis looked at the effect on learner 

attitudes. A very large ES was reported for dynamic geometry software (d=1.02) 
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(Chan & Leung, 2014), but this is likely to have been inflated by the exploratory 
nature of the study. The ESs reported for other exploratory approaches, game-based 
approaches and hand-held devices were medium to small: exploratory computer 
environments d=0.60 (Sokolowski et al., 2015), game-based approaches d=0.26 
(Tokac et al., 2015) and the use of mobile devices, d=0.16 (Tingir et al., in press). 
Technological tools have the potential for large effects, but, whilst Chan and Leungôs 
finding suggests that the use of DGS has considerable potential, more substantial 
research is needed before assuming that dynamic geometry software will be 
transformative in the classroom. 
 

One meta-analysis of the impact of the use of technological tools on learnersô 
attitudes towards mathematics reported an ES of 0.35 (Savelsburgh et al., 2016). 
Moderator analysis also revealed that the impact on attitude lessened as 
learners got older, although this may be affected by a general tendency for 
attitudes to become more negative with age through the school years. 
 

Li and Ma (2010) stress that how technology is used matters. Two best-evidence 
studies by Slavin et al. (2008, 2009) indicate that technology applications appear to 
produce lower effects than interventions aimed at changing teaching. As technology 
advances, there will be an increased need for professional development for teachers 
to keep pace with this change (Chauhan, 2017). 
 

Computer-Assisted Instruction 
 

There is an extensive research base considering the impact of the use of CAI on 
mathematics attainment, although it is limited by being largely conducted with 
systems that were designed some time ago for use in the US. The meta-analyses 
produce ESs ranging from 0.01 to 0.41. Smaller ESs are reported in the most recent 
studies, which are of higher methodological quality. Cheung & Slavin (2013) report 
an ES of 0.16 for CAI, although the effect reduced to a non-significant 0.06 when 
including only large randomised controlled studies. Steenbergen-Hu & Cooper 
(2013) found an ES of 0.01 for ITS approaches. Overall the evidence base indicates 
that the use of CAI does not have a large negative effect on learning and may be a 
valuable supplement to teaching, which can free the teacher to focus on other 
aspects of teaching. This supplemental use is supported by findings (Schmid et al., 
2009) that the effects of the use of technology are stronger when the technology use 
is low (ES=0.33) or medium (ES=0.29) compared with high usage (ES=0.14). 
Ruthven (2001) cites one extensive study conducted in the UK in the 1990s on the 
effects of integrated learning systems (ILS), which concluded that ILS have shown 
effectiveness for the development of basic skills, but not for reasoning with 
numbers. It is likely that the capabilities of CAI, ITS and other ILS systems will 
develop considerably alongside advances in technology and big data. There is a 
need for further studies in England to evaluate these developments and to establish 
which aspects of CAI have the potential to improve learning. 
 

Evidence base 
 

Overall the evidence base is fairly strong, but caution must be applied in an area 
subject to such rapid change. We have drawn on 11 meta-analyses synthesizing 
434 studies covering the period 1962-2016. Study overlap would appear to lie within 
the usual range; for example, 23% of the studies in Steenbergen-Hu & Cooper 
(2013) overlap with the 64 studies included in Cheung & Slavin (2013). 
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The meta-analyses represent a range of methodological quality. In particular, many 
of the primary studies reviewed in the meta-analyses of technology tools are 
exploratory studies and many are small-scale and without pre-tests. Conversely, 
there is a very extensive programme of research on CAI with large-scale RCTs, but 
these are US-based, and research is needed to understand how they might work in 
the English context. 
 

Moderator analyses included within nine of the meta-analyses suggest that 
elementary and/or middle school learners return similar or higher ESs than do 
secondary-age learners. Cheung & Slavin (2013) note this to be consistent with 
previous reviews. Over half of the included meta-analyses looked at the time-span of 
the intervention. As Table 1 shows, the results indicate a range of ESs, with no clear 
picture as to the óbestô intervention length. 
 

Directness 
 

Technology tools 
 

As Li & Ma (2010) observe, context matters in the use of technology tools: ñThe 
effectiveness of mathematics learning with technology is highly dependent on many 
other characteristics such as teaching approaches, type of programs, and type of 
learners.ò (p. 200) Whilst this is the case for any broad set of tools (e.g., 
manipulatives), the technology area is particularly broad. The range and uses of 
technology tools has changed, and continues to change, rapidly. Hence, many of the 
tools examined are innovative and novel. Novelty may affect implementation 
positively, because the novelty may motivate learners and teachers. Novelty can 
also affect implementation negatively, because teachers may have difficulty using 
technology through lack of expertise or guidance. 
 

Technology applications 
 

The stronger primary studies of CAI are largely conducted in the US and evaluate 
dated CAI systems. None of the CAI studies were in England or with programmes 
designed for the English context (although some technology applications designed 
for the English context do exist). 
 

The recent UK trial of PowerTeaching Maths (Slavin et al, 2013) demonstrates that 
the transfer of a US technology-focused intervention to the context of English 
classrooms is not straightforward. PowerTeaching Maths is a technology-enhanced 
teaching approach based on cooperative learning in small groups. The researchers 
found that implementation was limited by the prevalence of within-class ability 
grouping in England. 
 

Cheung & Slavinôs (2013) findings about large-scale RCTs suggest that, when 
implemented at scale, the effects of technology applications are likely to be small or 
negligible, but not negative.  

Threat to directness Grade Notes 

Where and when the 2 The greatest threat to directness is the 
studies were carried  publication date of the included studies, 
out  given the speed of technological change. 

How the intervention 3 Technology tools are generally well-defined, 
was defined and  although the ways in which these tools are 
operationalised  used is less so. 
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  Technology applications are largely designed 
  for use in the US curriculum. 

Any reasons for 2 Possible novelty factor. 
possible ES inflation   

Any focus on 3 N/A 
particular topic areas   

Age of participants 3 Majority of meta-analyses covered the K-12 
  range, two covered elementary or elementary 
  and middle school grades. Moderator 
  analysis allowed for exploration of grade- 
  level implications. 
 

Overview of effects  

Meta- Effec No of Qual- Comment 
analysis t Size studies ity  

 (d) (k)    
Effect of technology use in general on mathematical attainment 

[NOTE: These meta-analyses combine technology tools and CAI.] 

Li & Ma 0.28 46 2 Studies contained 85 ESs. 
(2010): [0.13,   Interventions with durations of more 
Mathematics 0.43]   than 1 year had lower effects than 
[1991-2005]    those of one term. 

Chauhan 0.47 41 2 ES for mathematics reported. 
(2017): [0.35,   Overall d=0.55 across subjects, 
Primary 0.59]   k=122. This is a general meta- 
(elementary)    analysis and, hence, the data 
[2000-2016]    extraction for mathematics-specific 

    instructional features is limited. ES 
    may be inflated because more than 
    half of the included studies have no 
    pre-test. 
Effect of Computer Aided Instruction (CAI) and Intelligent Tutoring Systems 
(ITS) on mathematical attainment   

Cheung & 0.16 74 3 Computer-Assisted Instruction 
Slavin [0.11,   (CAI), and includes Intelligent 
(2013): 0.20]   Tutoring Systems (ITS). 
CAI    Applications were categorised as 
(including    supplemental, computer-managed 
ITS)    (or assessment-based systems) or 
[1980-2010]    comprehensive. Supplemental was 

    found to have larger effects (and to 
    have a more extensive evidence 
    base). The focus of this meta- 
    analysis is on ñreplicable programs 
    used in realistic settings over 
    periods of at least 12 weeksò using 
    standardised tests (p. 95). The 
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    programmes used are all developed 
    for the US. 
    Large randomised controlled studies 
    had smaller (and non-significant) 
    effects d= 0.06. 

Steenbergen 0.01 26 3 Some studies had no pre-test. 
-Hu & [- reports,  ITS had a negative effect on low- 
Cooper 0.10, 31  attaining learners (only significant 
(2013): 0.12] studies  on a fixed effects model, g = -0.19, 
ITS  compari  k=3). This result needs to be treated 
[1997-2010]  ng ITS  with caution since it is based on a 

  to  small number of studies and the 
  regular  effect is only significant on some 
  classroo  models. 
  m   

  instructi   

  on,   

  17   

  studies   

  with   

  adjusted   

  effects   

Kuchler 0.28 61 2 Weighted ES with 4 outliers 
(1998):    removed. 
CAI    No CI given for ES 
[1976-1996]     

Hartley 0.41 89 1 CI calculated from standard error 
(1977): [0.29,   (by review authors). At Grade 5 
CAI 0.53]   (Y6), ES were larger for low 
[1967-1976]    attainers compared to high 
Synthesised    attainers, and also larger for 1 
studies from    session per week compared to daily 
1962, but    (5) sessions per week (p.81). 
first study    Effects appear to decrease with 
involving    age, although younger (Y3) and 
technology    older (Y12) groups are out of our 
(CAI) dated    age range. 
1967.     

     

Effect of technology tools on mathematical attainment 
     

Sokolowski 0.60 24 2 Meta-analysis includes a very broad 
et al. (2015): [0.53, primary  range of packages under the 
Exploratory 0.66] ESs  umbrella of Exploratory Computer 
Computer    Environments (DGS, games, 
Environment    generic gaming, collaborative 
s    software) and a broad range of 
[2000-2013]    different approaches. 

Chan & 1.02 9 2 Short-term instruction with DGS 
Leung [0.56,   significantly improved the 
(2014): 1.48]   achievement of primary learners d = 
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Dynamic    1.82 [1.38, 2.26], k =3. The effect 
Geometry    size may be inflated, because 
Software    studies were largely small scale and 
[2002-2012]    of short duration. 

Tingir et al. 0.16 3 3 The effect for mathematics is not 
(In press): [ -   significant, but this is based on a 
Mobile 0.55,   very small sample of studies (k=3). 
devices 0.87]   Effects in science and reading were 
[2010-2014]    larger (and reading was significant). 

     

Tokac et 0.26 13 2 This conference paper reports work 
al. (2015): [0.01,   in progress, although some detail is 
Game based 0.50]   provided. Moderator analysis was 
learning    carried out but is not reported in 
[2000-2011]    detail. 

Effect of use of technological tools on attitude 
     

Savelsburgh 0.35 11 3 Effect of innovative mathematics 
et al (2016) [0.24,   and science teaching on attitudes. 
óinnovativeô 0.47]   Innovative approaches include ICT- 
ICT-rich    rich environments (19 of 65). Most 
environments    of the ICT-rich studies were 
[1988-2014]    conducted in mathematics 

    education (11 of 19). No difference 
    found for mathematics or for ICT- 
    rich environments, but effects 
    decrease with age. 

Effect of technology tools on learning of algebra 
     

Haas (2005) 0.07 7 2  
     

Rakes et al. 0.17 23 3  

(2010)     

     

References     
 

Meta-analyses included 
 

Chan, K. K., & Leung, S. W. (2014). Dynamic geometry software improves 
mathematical achievement: Systematic review and meta-analysis. Journal 
of Educational Computing Research, 51(3), 311-325. 

 

Chauhan, S. (2017). A meta-analysis of the impact of technology on learning 
effectiveness of elementary students. Computers & Education, 105, 14-30. 

 

Cheung, A. C., & Slavin, R. E. (2013). The effectiveness of educational technology 
applications for enhancing mathematics achievement in K-12 classrooms: 
A meta-analysis. Educational Research Review, 9, 88-113. 

 

Hartley, S. S. (1977) Meta-Analysis of the Effects of Individually Paced Instruction 
In Mathematics. Doctoral dissertation University of Colorado at Boulder. 

 

Haas, M. (2005). Teaching methods for secondary algebra: A meta-analysis 
of findings. Nassp Bulletin, 89(642), 24-46. 

 

 

98 



 
Kuchler, J. M. (1998) The effectiveness of using computers to teach secondary 

school (grades 6-12) mathematics: A meta-analysis. Ph.D. thesis, 
University of Massachusetts Lowell. 

 

Li, Q. and Ma, X. (2010). A meta-analysis of the effects of computer technology on 
school studentsô mathematics learning. Educational Psychology Review, 
22(3), 215-243. 

 

Rakes, C. R., Valentine, J. C., McGatha, M. B., & Ronau, R. N. (2010). Methods of 
Instructional Improvement in Algebra A Systematic Review and Meta-
Analysis. Review of Educational Research, 80(3), 372-400. 

 

Savelsbergh, E. R., Prins, G. T., Rietbergen, C., Fechner, S., Vaessen, B. E., 
Draijer, J. M., & Bakker, A. (2016). Effects of innovative science and 
mathematics teaching on student attitudes and achievement: A meta-analytic 
study. Educational Research Review, 19, 158-172. 

 

Sokolowski, A., Li, Y., & Willson, V. (2015). The effects of using exploratory 
computerized environments in grades 1 to 8 mathematics: a meta-analysis of 
research. International Journal of STEM Education, 2(1), 1-17. 

 

Steenbergen-Hu, S., & Cooper, H. (2013). A meta-analysis of the effectiveness of 
intelligent tutoring systems on Kï12 studentsô mathematical learning. Journal 
of Educational Psychology, 105(4), 970-987. 

 

Tingir, S., Cavlazoglu, B., Caliskan, O., Koklu, O., Intepe-Tingir, S. (In press) Effects 
of mobile devices on K-12 students' achievement: A meta-analysis. Journal of 
Computer Assisted Learning, DOI: 10.1111/jcal.12184 

 

Tokac, U., Novak, E. & Thompson, C. (2015). Effects of Game-Based Learning on 
Studentsô Mathematics Achievement: A Meta-Analysis. Representing Florida 
State University with a poster presentation at 2015 Statewide Graduate 
Student Research Symposium, University of Central Florida, Orlando, FL, 
April 24, 2015. 

 

Secondary meta-analyses 
 

Slavin, R. E., & Lake, C. (2008). Effective Programs in Elementary Mathematics: A 
Best-Evidence Synthesis. Review of Educational Research, 78(3), 427-515. 
doi:10.3102/0034654308317473. [This focuses on the effectiveness of 
specific programmes designed for use in the US, some of which are no longer 
commercially available. The analysis of CAI in general has been superseded 
by Cheung & Slavin (2013). Used to quantify comparison to instructional 
programmes: ñMedian effect sizes for all qualifying studies were +0.10 for 
mathematics curricula, +0.19 for CAI programs, and +0.33 for instructional 
process programs.ò (p. 476)] 

 

Slavin, R. E., Groff, C., & Lake, C. (2009). Effective Programs in Middle and High 
School Mathematics: A Best-Evidence Synthesis. Review of Educational 
Research, 79(2), 839-911. [This focuses on the effectiveness of specific 
programmes designed for use in the US, some of which are no longer 
commercially available. The analysis of CAI in general has been superseded 
by Cheung & Slavin (2013). Used to quantify comparison to instructional 
programmes: ñThe weighted mean ES for math curricula was only +0.03. 
Corresponding numbers were +0.10 for CAI studies and +0.18 for instructional 
process studies. Among the instructional process programs, however, there 
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was great variation. Two cooperative learning programs, STAD and 
IMPROVE, had very positive outcomes (weighted mean ESs of +0.42 and 
+0.52, respectively), and several other types of approaches had positive 
effects in one or two studies.ò (p. 882)] 

 

Meta-analyses excluded [and reason] 
 

Chen, H. (2004). The efficacy of mathematics interventions for students with 
learning disabilities: A meta-analysis. (Order No. 3157959, The University of 
Iowa). [Excluded due to focus on students with learning difficulties.] 

 

Demir, S., & Basol, G. (2014). Effectiveness of Computer-Assisted Mathematics 
Education (CAME) over Academic Achievement: A Meta-Analysis Study. 
Educational Sciences: Theory and Practice, 14(5), 2026-2035. [Too little 
information contained in paper] 

 
Dennis, M. S., Sharp, E., Chovanes, J., Thomas, A., Burns, R. M., Custer, B., & Park, J. (2016). A 

MetaȤAnalysis of Empirical Research on Teaching Students with Mathematics Learning 
Difficulties. Learning Disabilities Research & Practice, 31(3), 156-168. [Excluded due to focus 
on students with learning difficulties.] 

 

Kroesbergen, E. H., & Van Luit, J. E. (2003). Mathematics interventions for 
children with special educational needs a meta-analysis. Remedial and 
special education, 24(2), 97-114. [Excluded due to focus on students with 
learning difficulties.] 

 

Lee, D. S. (2000). A meta-analysis of mathematics interventions reported for 1971-
1998 on the mathematics achievement of students identified with learning 
disabilities and students identified as low achieving. Doctoral Thesis, 
University of Oregon ProQuest UMI 9963449 [Excluded due to focus on 
students with learning difficulties.] 

 

Sahin, B. (2016) Effect of the use of technology in mathematics course on attitude: A 
meta analysis study. Turkish Online Journal of Educational Technology, 
(November Special Issue), pp. 809-814 [Information too poorly reported in the 
paper] 

 

Other references 
 

Ruthven, K. (2001). British research on developing numeracy with technology. In M. 
Askew & M. Brown (Eds.), Teaching and Learning Primary Numeracy: 
Policy, Practice and Effectiveness. A review of British research for the British 
Educational Research Association in conjunction with the British Society for 
Research into Learning of Mathematics (pp. 29-33). Southwell, Notts: British 
Educational Research Association (BERA). 

 

Slavin, R. E., Sheard, M., Hanley, P., Elliott, L., & Chambers, B. (2013). Effects of 
Co-operative Learning and Embedded Multimedia on Mathematics Learning in 
Key Stage 2: Final Report. York: Institute for Effective Education. 
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7.3 Concrete manipulatives and other representations 
 

What are the effects of using concrete manipulatives and other 
representations to teach mathematics? 
 

Concrete manipulatives can be a powerful way of enabling learners to engage with 

mathematical ideas, provided that teachers ensure that learners understand the 

links between the manipulatives and the mathematical ideas they represent. Whilst 

learners need extended periods of time to develop their understanding by using 

manipulatives, using manipulatives for too long can hinder learnersô mathematical 

development. Teachers need to help learners through discussion and explicit 

teaching to develop more abstract, diagrammatic representations. Number lines are 

a particularly valuable representational tool for teaching number, calculation and 

multiplicative reasoning across the age range. Whilst in general the use of multiple 

representations appears to have a positive impact on attainment, the evidence base 

concerning specific approaches to teaching and sequencing representations is 

limited. Comparison and discussion of different representations can help learners 

develop conceptual understanding. However, using multiple representations can 

exert a heavy cognitive load, which may hinder learning. More research is needed to 

inform teachersô choices about which, and how many, representations to use when. 
 

Strength of evidence (Manipulatives): HIGH 
 

Strength of evidence (Representations): MEDIUM 
 

Findings 
 

The use of concrete manipulatives has been extensively researched and we 
identified five meta-analyses. The aggregated ESs present a relatively consistent 
small to moderate effect, d=0.39 (Carbonneau et al., 2013), d=0.22 (Holmes, 2013), 
d=0.39 (Domino, 2010) and d=0.29 (Sowell, 1989). However, within the earlier meta-
analyses (Domino, 2010; Sowell, 1989), there was a very considerable degree of 
unexplained variation, which may be due to methodological or implementation 
factors, and one meta-analysis (LeNoir, 1989) found too much variation to report an 
overall effect. 
 

The most recent meta-analysis, Carbonneau et al.ôs (2013), was designed to make 
sense of this variation. Carbonneau et al. re-examined many of the studies included 
in previous meta-analyses, focusing specifically on those in which learners were  
taught how to use the concrete manipulatives, and in which conditions involving 
concrete manipulatives were compared to teaching involving exclusively abstract 
mathematical symbols. They examined the effects on retention, problem solving and 

transfer, as well as on attainment overall.4 The effects were higher for retention 
(d=0.59, k=53) and problem solving (d=0.48, k=9) than for transfer (d=0.13, k=13),  
although there were many more studies of retention. They found that high levels of 
instruction were associated with higher effects on overall, retention and problem- 
solving outcomes, but that the opposite was true for transfer outcomes; here, studies 
with lower levels of instructional guidance had higher effects. Hence, Carbonneau et  
 

 
4 Retention was defined as an ñoutcome that required students to solve basic factsò (Carbonneau et al., 2013, p.  

388), rather than a delayed post-test measure. Problem-solving was defined as tasks which ñstudents were not 

explicitly instructed on how to completeò (p.?) and transfer as extending knowledge to a new situation or topic. 

Justification was also examined, but only two studies addressed this outcome. 
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al. argue that in general explicit teaching helps learners to establish connections 
between the concrete manipulatives and the intended mathematical ideas, which in 
turn facilitates comprehension and understanding. However, if the pedagogical 
objectives are for learners to transfer knowledge to other areas of mathematics, it 
may be important to reduce the extent of scaffolding on the use of the manipulatives. 
However, they caution that more research is needed in this area. 
 

Domino (2010) found no significant differences for learners at different attainment 
levels. However, Carbonneau et al. (2013) found an age effect: concrete 
manipulatives had a greater effect for learners aged 3-7 (d=0.33) and 7-11 (d=0.45) 
than for older learners (d=0.16), which they attribute to their developmental stage 
(Piagetôs concrete operational stage). However, the majority of studies were with the 
7-11 age group (38 of 55 studies). 
 

Whilst the earlier meta-analyses (Domino, 2010; LeNoir, 1989; Sowell, 1989) found 
benefits in long-term use of manipulatives, the results also showed variation. 
Carbonneau et al.ôs (2013) study carefully examined the effect of time, and found 
that, in general, interventions using manipulatives for up to 45 days had a greater 
effect than interventions over longer periods. However, Carbonneau et al. caution 
that more research is needed to better understand the effect of instructional time. 
 

In contrast to concrete manipulatives, we found less, and weaker, evidence about 
the use of representations. Two of the meta-analyses (Holmes, 2013; Sowell, 1989) 
examined the effects of virtual or pictorial representations compared to manipulatives 
and in comparison to abstract teaching, and found no significant differences. 
 

There is a great deal of evidence regarding the importance of representations in the 
learning of mathematics (see, e.g., Nunes et al., 2009; see also Swan, 2005). 
Indeed, Nunes et al. (2008) observe that representations are fundamental to 
mathematics: ñConventional number symbols, algebraic syntax, coordinate 
geometry, and graphing methods, all afford manipulations which might otherwise be 
impossible.ò (p. 9) Consequently, learners need to learn to interpret, coordinate and 
use different mathematical representations to focus on the relevant relations in 
specific problems. Ainsworth (2006) argues that the question is not whether multiple 
representations are effective but rather how and under what circumstances they are 
more or less effective, and presents a research-based framework outlining ways in 
which two or more representations can interact during teaching and learning: two 
representations may complement each other by providing different information, or 
one representation may constrain the interpretation of the other, or the combination 
of two representations may enable learners to construct a deeper conceptual 
understanding. She notes that multiple representations can exert a heavy cognitive 
load on learners and argues that, all else being equal, the number of representations 
presented to learners should be the minimum necessary to achieve the pedagogic 
objectives. More research is needed on how representations should be used and 
sequenced. 
 

Finally, we note the particular value of using manipulatives and representations in 
principled ways for specific topics, such as the importance of the number line in 
extending learnersô understanding of whole numbers to fractions, decimals and 
percentages (e.g., Siegler et al., 2010). For more details, see Mathematical Topics 
modules. 
 

Evidence base 
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We reviewed five meta-analyses, which all focused on concrete manipulatives rather 
than representations more broadly. These five meta-analyses synthesised more 
than 150 studies published between 1955 and 2012. Two of the meta-analyses are 
judged to be of high methodological quality, whilst the other three are judged to be of 
medium quality. There was a relatively small degree of overlap in the studies 
included when judged against the most recent and methodologically strongest meta-
analysis (Carbonneau et al., 2013). More evidence is required about the level, and 
type, of instructional guidance that should be provided, particularly relating to 
problem solving and transfer. 
 

The evidence base on the efficacy of representations is much weaker than 
for manipulatives. There is a need for a robust meta-analysis examining 
representations. 
 

There is currently a great deal of interest in England concerning Concrete-Pictorial-

Abstract (CPA) approaches to teaching mathematics.5 However, we found limited 
evidence about this approach and identified only one potentially relevant meta-
analysis (Hughes et al., 2014). However, we have excluded it from the review. This 
meta-analysis was concerned with students with learning difficulties and 
synthesised just two studies addressing the effect of CPA, both of which were 
conducted by the same team of researchers.  

Meta-analysis # Focus k Qual- Date Overlap 
    ity Range with 
      Cabonneau 
      et al. (2013) 

Carbonneau et 3 Concrete 55 3 1955- N/A 
al. (2013)  manipulatives   2010  

Holmes (2013) 5 Concrete and 26 3 1989- 19% 
  virtual   2012  

  manipulatives     

Domino (2010) 12 Physical 31 2 1991- 16% 
  manipulatives   2009  

  at primary     

LeNoir (1989) 29 Manipulatives 45 2 1958- 20% 
     1985  

Sowell (1989)6 
30 Manipulative 60 2 Pre-1989 Ò60% 

  materials     

  (includes     

  pictorial)     

Directness       
 

A recent research study in England has resulted in a professional publication 
focused on the use of manipulatives for the teaching of arithmetic (Griffiths et 
al., 2016).  
 

 

5 https://www.ncetm.org.uk/resources/48533 
 
6 Sowell (1989) does not provide a list of the original studies included in her meta-analysis. However, the 
maximum overlap is calculated using the number of studies published pre-1989 in Carbonneau et al. (2013). 
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Threat to directness Grade Notes 

Where and when the 3 Most studies were conducted in the US, but 
studies were carried   this is not judged to be a threat to directness 
out    in this area. 

How the intervention 2 The studies combine a range of different 
was defined and    manipulatives and representations. More 
operationalised    research is needed on what the level of 

     support and explicit instruction should be for 
     different learning outcomes. 

Any reasons for  2 Carbonneau et al.ôs ES may be inflated by 
possible ES inflation   the inclusion of studies using a within- 

     subjects design (23.2%). No statistically 
     significant difference was observed between 
     experimental and quasi-experimental studies. 

Any focus on  3    

particular topic areas      

Age of participants 3    

Overview of effects      

Meta-analysis  Effect  No of Comment  

  Size  studies   

  (d)  (k)    

Effect of concrete manipulatives on attainment in mathematics  

Carbonneau et  0.39,  55  Inclusion criteria: ñStud[ies] é  

al. (2103)  95%    compare[d] an instructional technique  

  CI    that used manipulatives with a  

  [0.33,    comparison group that taught math with  

  0.44]    only abstract math symbols [with]  é no  

      iconic representations é present. The  

      examined instructional treatments must  

      have provided some form of instruction  

      during which students were able to learn  

      from the manipulatives. é [S]tudies that  

      required students to work with rulers,  

      scales, or calculators were not included,  

      as these were seen as tools rather than  

      manipulatives.ò (p. 383).  

      Effect was higher for retention (d=0.59,  

      k=53) and problem solving (d=0.48, k=9)  

      than for transfer (d=0.13, k=13), although  

      there were many more ESs for retention.  

      Level of instructional guidance: Overall  

      (d=0.46, high, d=0.29, low), Retention  

      (d=0.90, high, d=0.19, low), Problem  
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   solving (d=1.06, high, d=0.04, low), 
   Transfer (d=0.00, high, d=0.27, low). 

   Instructional time: (d=0.34, Ò 14 days, 
   d=0.45, 15-45 days, d=0.14, Ó46 days). 
   However, Carbonneau et al cautioned 
   that they were not able to disentangle the 
   instructional time from the study length. 

   Age /developmental stage of learners: 
   Age 3-7, pre-operational (d=0.33), age 7- 
   11, concrete operational (d=0.45), 12+, 
   formal operational (d=0.16). 

   Perceptual richness of the manipulatives: 
   Retention (d=0.28 rich, d=0.77 bland), 
   Problem-solving (d= -0.27 rich, d=0.80 
   bland), Transfer (d=0.48 rich, d= -0.02 
   bland). 

   Mathematical topics: d=0.21, k=10, 
   Algebra; d=0.27, k=24) Arithmetic; 
   d=0.69, k=12, Fractions; d=0.37, k=6, 
   Geometry; d=0.58, k=3, Place value. 

Holmes (2013) 0.22, 24 ES (d) reported for manipulatives 
 95%  compared to non-use studies (k=14). 
 CI  

ES (d) for virtual manipulatives compared  

[0.05, 
 

  to physical: 0.20 [-0.05, 0.45] n.s., k=7).  

0.39] 
 

   

Domino 0.39, 24 ES (d) reported for 24 studies with both 
(2010): 95%  pre- and post-test measures. Years 4, 5 
primary CI  and 6 (i.e., KS2) appear to benefit most 

 [0.21,  from physical manipulatives (although 
 0.56]  only Y7 from secondary phase.) 

LeNoir (1989) - 45 LeNoir identified considerable variation in 
   the data with significant & homogeneous 
   effects for acquisition of measurement at 
   Grades K-5 (i.e., primary) of d=0,24 and 
   at Grades 6-9 (i.e., KS3 plus Y10) of 
   d=.43, but various effects for geometry 
   and place value were either not 
   significantly different from 0 (or the 
   effects were found to be too 
   heterogeneous to report). 

Sowell (1989) 0.29 10 ES (d) reported for 10 studies examining 
   the acquisition of broadly stated 
   objectives at Y2-5 when using 
   manipulatives, compared to 
   abstract/symbolic instruction. 
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d=0.09, n.s. k=16 for achievement of 
specific objectives, Y2-9. Significant 
differences were not found for pictorial 
versus abstract or concrete versus 
pictorial. Various other comparisons 
(attitudes, retention, transfer and a range 
of years/grades) did not produce clear 
results, either because of heterogeneity 
or a very small number of original 
studies. 

 

References 
 

Meta-analyses included 
 

Carbonneau, K. J., Marley, S. C., & Selig, J. P. (2013). A meta-analysis of the 
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7.4 Tasks 
 

What is the evidence regarding the effectiveness of mathematics tasks? 
 

The current state of research on mathematics tasks is more directly applicable to 

curriculum designers than to schools. Tasks frame, but do not determine, the 

mathematics that students will engage in, and should be selected to suit the 

desired learning intentions. However, as with textbooks, how teachers use tasks 

with students is more important in determining their effectiveness. More research is 

needed on how to communicate the critical pedagogic features of tasks so as to 

enable teachers to make best use of them in the classroom. 
 

Strength of evidence: LOW 
 

Findings 
 

A classroom mathematics task refers to whatever prompt is given to students to 
indicate what they are to do. This is often distinguished from the activity which 
results from a particular prompt (Christiansen & Walther, 1986), although it is 
generally acknowledged that it can be difficult to separate a task from the activity that 
results from it (Watson & Mason, 2007). Tasks are critical to the learning of 
mathematics, because the tasks used in the mathematics classroom largely define 
what happens there (Sullivan, Clarke, & Clarke, 2013), as well as contributing to 
studentsô perceptions of the nature of mathematics itself. However, how a task is 
used with students is likely to be more important than the specific details of the task 
itself (Stein, Remillard, & Smith, 2007). 
 

There is a wealth of literature about mathematics tasks, which is often generously 
illustrated with examples. Exemplification is critical to communicating task types to 
teachers, since different teachers interpret task descriptors, such as ñrichò, differently 
(Foster & Inglis, 2017). This suggests that unless curriculum designers give 
examples of the kinds of tasks intended by a word such as ñrichò, their goals are 
likely to be frustrated, as teachers will interpret the term in different ways. Further 
research is needed on how to communicate the pedagogic features of tasks in ways 
that enable teachers to use them effectively in the classroom. 
 

Ahmed (1987, p. 20) listed 10 desirable features of a ñrich mathematical activityò, 

including accessibility, extendibility, potential for surprise, enjoyment and originality, 

and opportunities for students to pose questions, discuss, make decisions, speculate, 

make hypotheses and prove (see also Swan, 2008). Swanôs (2006) tasks focus on 

conceptual understanding and frequently address misconceptions directly, within a 

formative assessment framework. Watson and Mason (2005) designed tasks that 

exploit variation (Mun Ling, & Marton, 2011) and provide opportunities for students to 

generate examples of mathematical objects so as to make use of and develop their 

mathematical powers (Mason, & Johnston-Wilder, 2006). Tasks which invite students to 

create examples and non-examples can be particularly helpful in broadening and 

enriching studentsô example spaces and focusing attention on relevant features of 

mathematical objects and structure (Watson & Mason, 2005). 
 

In many cases, high-quality mathematics tasks pose a problem for students to solve 
which admits of multiple solutions or solution approaches that have different levels of 
mathematical sophistication, commensurate with the capabilities of the students 
(Ruthven, 2015, p. 314). Inquiry-based, problem-solving tasks are linked in large-
scale US empirical studies to significant gains in attainment (e.g., Thomas & Senk, 
 

108 



 
2001). Sullivan, Clarke and Clarke (2013, p. 57) described what they termed 
ñcontent-specific open-endedò tasks, which are óóaccessible by students, able to be 
used readily by teachers, foster a range of mathematical actions, and contribute to 
some of the important goals of learning mathematicsôô. A balance of different kinds of 
tasks is likely to be desirable, but this can be difficult to achieve if teachers rely 
excessively on textbooks which are dominated by short, closed exercises. 
 

It is important to note that a rich mathematics task by itself will not automatically 
produce the intended learning; how the teacher enacts the task is critical (e.g., see 
Stein, Remillard, & Smith, 2007). Only the teacher who knows their particular 
students can take account of prior student knowledge and judge how to support and 
motivate their students to learn mathematics through use of the task. However, 
Stein, Grover and Henningsen (1996) found that teachers tended to reduce the 
degree of challenge of tasks, which could be problematic if tasks became 
mathematically trivialised. 
 

The context used (if any) in a mathematics task is an important factor to consider. 
Contexts can be distracting and confusing for students (Lubienski, 2000), particularly 
for low SES students (Cooper and Dunne, 2000). Sometimes contexts are presented 
illustratively or humorously, but if contexts are supposed to be taken seriously by the 
students then they should be appropriately realistic, perhaps even relating to topics 
likely to be of interest or importance to students. The extra cognitive load provided by 
setting some mathematics within a real-life context may make the task too 
demanding. Alternatively, a familiar context may help students to appreciate more 
concretely the mathematical structure lying behind a problem. The Realistic 
Mathematics Education (RME) programme (De Lange, 1996; Van den Heuvel-
Panhuizen, & Drijvers, 2014) uses context not as an add-on to motivate students but 
to provide realisable/imaginable situations in which students can develop their 
mathematical understanding. 
 

Anthony and Walshaw (2007) summarised their systematic review by 
commenting that 
 

The research provides evidence that tasks vary in nature and purpose, with 
a range of positive learning outcomes associated with problem-based tasks, 
modelling tasks, and mathematics context tasks. But whatever their format, 
effective tasks are those that afford opportunities for students to investigate 
mathematical structure, to generalise, and to exemplify. (p. 140) 

 

It is likely that many tasks, even apparently routine ones, could fulfil these objectives 
if handled sensitively by a skilful teacher. This suggests that emphasis should be 
placed on teacher professional development relating to the effective use of a variety 
of mathematics tasks. 
 

Evidence base 
 

The quantity of research in mathematics task design has increased considerably in 

recent years, as illustrated by the creation of the International Society for Design and 

Development in Education (ISDDE) and its journal, Educational Designer. Although, as 

one might expect, we found no experimental studies on task design (only studies on 

designed interventions), there are many studies concerned with task design. These 

frequently set out a collection of task design principles, but one difficulty is to decide 

what constitutes a desirable set of principles. As expected, there are also no meta-

analyses of mathematics tasks and just one systematic review which contained 
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a relevant chapter (Anthony, & Walshaw, 2007). Watson and Ohtani (2015), based 
on the ICMI Study 22, is an authoritative survey of the current state of the field. 
 

Because of the English language limitation, we have not been able to include the 
Russian experience, in which task design is central in mathematics teacher 
education. Nor have we been able to adequately take account of design principles 
of variation, as applied in Shanghai (and, to some extent, the rest of China), in 
which effectiveness is discussed deeply and known about but not reported as 
research. Related to this is also the long tradition of development over decades of 
problem tasks in Japan, meaning that children now do the same problem tasks as 
their parents and teachers did when they were at school. 
 

Directness 
 

The variation in context of the various studies examined does not seem a 
likely threat to the directness of these findings. 
 

Future research 
 

There is a need for more cross-disciplinary research investigating how tasks can be 
designed in the light of research evidence on how students learn mathematics. We 
also need to know how to communicate the key features of a task, and the 
pedagogic opportunities that it offers, to teachers. 
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7.5 Textbooks 
 

What is the evidence regarding the effectiveness of textbooks? 
 

The effect on student mathematical attainment of using one textbook scheme rather 

than another is very small, although the choice of a textbook will have an impact on 

what, when and how mathematics is taught. However, in terms of increasing 

mathematical attainment, it is more important to focus on professional development 

and instructional differences rather than on curriculum differences. The organisation of 

the mathematics classroom and how textbooks can enable teachers to develop 

studentsô understanding of, engagement in and motivation for mathematics is of 

greater significance than the choice of one particular textbook rather than another. 
 

Strength of evidence: HIGH 
 

Findings 
 

Textbooks can play a variety of different roles in the mathematics classroom. At one 
extreme, they can be viewed as one resource among many, to be dipped into from 
time to time and drawn from as appropriate within a broader scheme of work. At the 
other extreme, a textbook may be adopted in a wholesale manner as the basis for 
the entire mathematics curriculum. In this case, the contents of the textbook (and 
accompanying teacher guide) can come to define the mathematics to be taught and 
provide an organised sequence of topics for teachers to use to pace and structure 
their teaching. If adopted in this way, textbooks can encourage particular 
pedagogies and teaching strategies and indicate the amount of weight that should 
be given to different topics, as well as to different aspects of learning, such as 
routine practice (Howson, 2013). 
 

In their two meta-analyses, Slavin, Lake, & Groff (2007a, 2007b) searched for high-
quality studies on elementary and middle school mathematics curricula, and 
divided the curricula that they examined into three categories:  

reform: NCTM Standards-based NSF-funded curricula stressing ñproblem 
solving, manipulatives, and concept development, and a relative de-
emphasis on algorithmsò (Slavin, Lake, & Groff, 2007b, p. 11), such as 
Everyday Mathematics at elementary level and the University of Chicago 
School Mathematics Project (UCSMP), Connected Mathematics, and Core-
Plus Mathematics at middle school level;  
traditional, commercial textbooks, which were based on the NCTM Standards 
but with ña more traditional balance between algorithms, concepts, and 
problem solvingò (Slavin, Lake, & Groff, 2007b, p. 8), such as McDougal-Littell 
and Prentice Hall;  
back-to-basics: Saxon Math, a ñcurriculum that emphasizes building studentsô 
confidence and skill in computations and word problemsò (Slavin, Lake, & 
Groff, 2007b, p. 11). 

 

For the elementary school textbooks, Slavin, Lake and Groff (2007a) found a median 
effect size across the three types of only 0.10 (k = 13), even though many of the 
studies included had methodological problems that might have been expected to 
inflate the effect sizes. They concluded that ñthere is limited high-quality evidence 
supporting differential effects of different math curriculaò (p. 17). For the middle and 
high school textbooks, they found an even smaller overall effect size for mathematics 
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curricula (ES = 0.03, k = 40), and outcomes were similar for disadvantaged and 
non-disadvantaged students and for students of different ethnicities. 
 

Both meta-analyses concluded that there is a ñlack of evidence that it matters very 
much which textbook schools chooseò (Slavin, Lake, & Groff, 2007b, p. 44) and that 
ñcurriculum differences appear to be less consequential than instructional 
differencesò (Slavin, Lake, & Groff, 2007b, p. 45). They commented that 
interventions addressing everyday teaching practices and student interactions have 
more promise than those emphasizing textbooks alone and advise schools to 
ñfocus more on how mathematics is taught, rather than expecting that choosing one 
or another textbook by itself will move their students forwardò (Slavin, Lake, & Groff, 
2007a, p. 39). The studies used in these meta-analyses cover a diverse range of 
settings, and there was no clear pattern of any difference in ESs for students 
according to SES: ñPrograms found to be effective with any subgroup tend to be 
effective with all groupsò (Slavin, Lake, & Groff, 2007b). 
 

However, the findings from these two US meta-analyses need to be interpreted 
cautiously for the English context. In most cases, the studies examined compared 
textbook use to business as usual, which means that some of the control groups also 
used textbooks, at least for some of the time. Even more importantly, the US does 
not have a national curriculum, as England does. This means that textbooks may 
come to define the curriculum in the US to a much greater extent than in England ï 
indeed, as above, a textbook is often described as ña curriculumò in the US. 
 

In schools in England, the balance tends to lie away from the wholesale adoption 
of textbooks and towards their more selective use. Mathematics teachers in 
England have consistently made much less use of textbooks than have teachers in 
other countries. The TIMSS 2011 study (Mullis et al., 2012) reported that only 29% 
of mathematics teachers in England used textbooks ñas the basis for instructionò at 
Grade 8 (equivalent to Year 9 in England) (compared to a 77% international 
average). At Grade 4 (Year 5 in England) the corresponding figure was 10% 

(compared to a 75% international average).7 In each case, these were the second-

lowest uses in all the systems surveyed. 
 

Askew, Hodgen, Hossain and Bretscher (2010) found that countries that perform 

consistently well in international comparative mathematics assessments tend to use 

more carefully constructed textbooks as the main teaching resource, whereas current 

textbooks in England tend to be less mathematically coherent and are focused on 

routine examples (see also, Hodgen, Küchemann & Brown, 2013). Fan, Zhu, & Miao 

(2013) pointed to many aspects of variation among textbooks from different education 

systems, both in presentation and in pedagogical structure. English mathematics 

textbooks are notable for their undemanding routine exercises and fragmented 

approach, and there has been much criticism of the routine and shallow nature of a 

great deal of typical English mathematics textbook content. In this connection, Howson 

(2013) stressed the importance of research focusing on the exercises in textbooks and 

examining whether they go beyond the routine. In their study of textbooks, Haggarty 

and Pepin (2002) found that textbooks in England were characterised by unrelated rules 

and facts aimed at the development of ñfluency in  
 
 

 
7 We note that it is possible that the use of textbooks in primary may have increased due to a recent 
national initiative promoting the use of textbooks, although up to date information is not available: 
http://www.mathshubs.org.uk/what-maths-hubs-are-doing/teaching-for-mastery/textbooks/ 
 

113 

http://www.mathshubs.org.uk/what-maths-hubs-are-doing/teaching-for-mastery/textbooks/


 
the use of routine skills through repeated practice in exercisesò (p. 587). There was only 

ña superficial veneer of including process skillsò (p. 586). Newton & Newton (2007) also 

found that textbooks aimed at primary children in England focused on practising 

algorithms rather than reasoning and understanding. Continental textbooks tend to have 

a more intensive focus on fewer ideas, whereas textbooks in England tend to switch 

topics frequently and revisit them repeatedly (Bierhoff, 1996). 
 

Fan, Zhu and Miao (2013) found that there had been a ñgeneral decline both in the 
amount of material demanding student involvement and in the percentage of that 
material requiring higher-order thinkingò (p. 638). They also found that problem-
solving tasks were simplistic, opportunities for deductive reasoning were largely 
absent and the majority of problems had no connection with the real world. They also 
stressed the critical role that teachers play in determining how they use textbooks 
and, in particular, what they choose to omit. Important mathematical connections 
were often not explicitly made in textbooks. For example, Levin (1998) found that in 
US elementary, middle school, and algebra textbooks, fractions and division were 
generally presented separately rather than in ways that contributed to building 
meaningful connections. 
 

It seems clear that although textbooks are important, simply providing ñbetterò 

textbooks will not by itself improve learning. Teachers have much greater effects on 

student attainment than textbooks or other resources, so textbooks need to be seen as 

part of a programme of change that includes professional development (PD); indeed, 

good textbooks might be enablers of this. The closest thing in England in recent years 

to wholesale adoption of a single textbook scheme is the National Numeracy Strategy 

(DfEE, 1999; DfEE, 2001), where the Framework comprised something closer to a 

curriculum than to a textbook, with pedagogical advice and a considerable range and 

variety of examples of tasks. In the primary phase, at least, the Strategy appears to 

have had a large system-wide effect of about 0.18 (see Brown et al., 2003), and it is 

noteworthy that the NNS was partially research-based (Brown, et al., 1998) and 

enjoyed PD, external support and headteacher engagement. The importance of these 

factors should not be underestimated. 
 

Evidence base 
 

In recent decades there has been a large increase in the amount of research on 
mathematics textbooks, a subject which had previously been relatively neglected 
(Fan, Zhu, & Miao, 2013; Howson, 2013). We found one recent systematic review 
(Fan, Zhu, & Miao, 2013) and two meta-analyses: one focused on elementary 
schools (Slavin, Lake, & Groff, 2007a) and the other on middle and high school 
(Slavin, Lake, & Groff, 2007b). 
 

Fan, Zhu, & Miao (2013) carried out a systematic search of literature published 
over the last 60 years. The authors noted that most of the studies that they found 
were small-scale exploratory studies by individual researchers, which generally 
focused on textbook use by teachers, rather than by students. 
 

Slavin, Lake, & Groff (2007a, 2007b) included only randomized or matched control 

group studies in which the two groups were equal at pre-test and the intervention lasted 

at least 12 weeks. A minimum treatment duration of 12 weeks was required in order to 

focus on practical programmes intended for use across a whole school year. 
 

Directness 
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In the US, where the majority of the studies on mathematics textbooks have been 
carried out, textbook use in mathematics is greater than in England, and textbooks 
are frequently referred to as ñmathematics curriculaò. As described above, in 
England the predominant approach appears to be sourcing material for lessons from 
a diverse selection of books and websites. While this approach could lead to some 
higher-quality lessons than those offered in any single textbook, it is time consuming 
for schools and makes coherence and balance harder to attain. This approach, 
coupled with frequent changes to the National Curriculum, may also have made it 
harder for publishers to fund the development of high-quality textbooks. We note that 
recent initiatives to promote textbooks inspired by those used in Singapore and 
Shanghai may affect the use of textbooks in English primary schools, but these 
initiatives have yet to be rigorously evaluated. 
 

This is not to say that all textbooks are alike. Fan, Zhu, & Miao (2013) commented 
that "remarkable differences were found in textbooks from different series and 
particularly from different countries, which seems to [them] to point not only to the 
lack of consensus in textbook development, but also to the inseparability of 
textbooks from the cultural and social background." (p. 640) The choice of one 
particular textbook over another will have implications for what, when and how 
mathematics is taught. Hence, schools and teachers do need to give careful 
consideration to textbook choice, and guidance should be provided, but choice of 
textbook by itself is unlikely to raise attainment in mathematics. 
 

We were not able to find meta-analyses specifically looking at the use of ebooks in 
the classroom.  

Threat to     Directness  Notes  

directness     
(1 low ï 3 

    
          

      high)     

Where and when    2  Differences in textbook use in the US and 
the studies were       England reduce the directness of these 
carried out         findings.  

How the intervention   2  Uncertainty over the extent to which textbooks 
was defined and       were adopted in their entirety. 
operationalised          

Any reasons for    2  Concern regarding attrition of schools in post- 
possible ES inflation      hoc analyses and lack of clear controls. The 

          fact that the counterfactual sometimes 
          included textbook use is problematic. 

Any focus on    3     

particular topic          

areas            

Age of participants    3     

Overview of effects         

Meta-  Effec   No of  Qual-  Study Comments 
analysis  t  studies  ity  inclusio  

  Size    (k)     n dates  

  (d)           
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     Looked at research on the 
     achievement outcomes of 
     mathematics programmes for 
     middle and high schools. 

     Effect sizes were somewhat 
     higher for the Saxon textbooks 
     (weighted mean ES=0.14 in 11 
     studies) than for the NSF- 
     supported textbooks (median 
     ES=0.00 in 26 studies). 
     However, the NSF programmes 
     add objectives not covered in 
     traditional texts, so to the degree 
     to which those objectives are 
     seen as valuable, these 
     programmes are adding impacts 
     not registered on the 

Slavin,     assessments of content covered 
Lake, & 

0.03 40 3 
1971- in all treatments. Among 3 

Groff 2008 studies of traditional mathematics 
   

(2007b)     curricula, one (Prentice Hall 
     Course 2) found substantial 
     positive effects, but two found no 
     differences. 

     The weighted mean effect size 
     for 24 studies of NSF-funded 
     programs was 0.00, even lower 
     than the median of +0.12 
     reported for elementary NSF- 
     funded programs. 

     It has been suggested that 
     possible misalignment between 
     the NSF-sponsored curricula and 
     the standardized tests used to 
     measure their effectiveness 
     could account for these small 
     effect sizes, but Slavin et al. do 
     not think this a likely explanation. 

     Most of the studies comparing 
     mathematics curricula are of 
     ñmarginal methodological 
Slavin,     qualityò: ñTen of the 13 qualifying 
Lake, & 

0.10 13 3 
 studies used post-hoc matched 

Groff 
 

designs in which control schools,     

(2007a)     classes, or students were 
     matched with experimental 
     groups after outcomes were 
     known. Even though such 
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studies are likely to overstate 
program outcomes, the 
outcomes reported in these 
studies are modest. The median 
effect size was only +0.10. The 
enormous ARC study found an 
average effect size of only +0.10 
for the three most widely used of 
the NSF-supported mathematics 
curricula, taken together. Riordan 
& Noyce (2001), in a post-hoc 
study of Everyday Mathematics,  
did find substantial positive 
effects (ES=+0.34) in comparison 
to controls for schools that had 
used the program for 4-6 years, 
but effects for schools that used 
the program for 2-3 years were 
much smaller (ES=+0.15). This 
finding may suggest that schools 
need to implement this program 
for 4-6 years to see a meaningful 
benefit, but the difference in 
outcomes may just be a selection 
artifact, due to the fact that 
schools that were not succeeding 
may have dropped the program 
before their fourth year. The 
evidence for impacts of all of the 
curricula on standardized tests is 
thin. The median effect size 
across five studies of the NSF- 
supported curricula is only +0.12, 
very similar to the findings of the 
ARC study.ò 
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8 Mathematical Topics 
 

8.1 Overview 
 

What is the evidence regarding the effectiveness of teaching approaches to 
improve learnersô understanding of specific topics within mathematics? 
 

The mathematics national curriculum covers a range of topics and strands, including: 
number, algebra, ratio, proportion and rates of change, geometry and measures, 
probability, and statistics. Elsewhere in this review, we have examined ógenericô 
approaches to teaching and learning mathematics, such as the use of concrete 
manipulatives, which are applicable across these topics and strands. It would be 
reasonable to assume that, whilst there are many similarities in teaching 
approaches, there are likely to be some differences. However, we found the 
evidence base to be limited in two ways. First, as Nunes et al. (2009) observe, there 
is little research in general on the ñtechnicalities of teachingò, or how to teach 
learners in specific topics. Second, the literature base is skewed. Aside from one 

meta-analysis relating to the use of dynamic geometry software,8 we found no meta-

analyses addressing effective approaches to teaching geometry, measures, 
probability or statistics. Aside from the meta-analyses relating to calculator use, we 
identified four meta-analyses focused on number and arithmetic/calculation, all 
concerned with approaches for learners with either learning or other cognitive 
disabilities or special educational needs. 
 

We identified three meta-analyses concerned with algebra, one of which addresses 
the particular needs of those with learning disabilities. We also identified three 
relevant What Works Clearinghouse (WWC) practice guides from the US, one 
concerned with teaching algebra, one with teaching fractions and another with 
teaching ñstrugglingò learners. In order to address the gaps in the evidence base, we 
have drawn additionally on several systematic reviews (e.g., Nunes et al., 2009). 
These reviews are mainly focused on how children learn rather than how to teach, 
although there is a great deal of guidance on what to emphasise in teaching. Hence, 
we use these to interpret and extend the WWC findings, in particular those relating to 
the teaching of fractions. 
 

We focus on the four mathematical topics: algebra, number (including calculation 
and multiplicative reasoning), geometry and measures, and probability and statistics. 
We note that the research base on the effectiveness of teaching approaches for 
geometry and measures, and for probability and statistics, is extremely limited. 
 

References 
 

Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. 
A. Grouws (Ed.), Handbook of research on mathematics teaching and 
learning (pp. 420-464). New York: Macmillan 

 

Shaughnessy, J. M. (1992). Research in probability and statistics: Reflections 
and directions. In D. A. Grouws (Ed.), Handbook of research in 
mathematics teaching and learning (pp. 465-494). New York: Macmillan.  

 
 
 
 

 
8 See Technology module. 

 

120 



8.2 Algebra 
 

What is the evidence regarding the effectiveness of teaching approaches to 
improve learnersô understanding of algebra? 
 

Learners generally find algebra difficult because of its abstract and symbolic nature 

and because of the underlying structural features, which are difficult to operate with. 

This is especially the case if learners experience the subject as a collection of 

arbitrary rules and procedures, which they then misremember or misapply. Learners 

benefit when attention is given both to procedural and to conceptual teaching 

approaches, through both explicit teaching and opportunities for problem-based 

learning. It is particularly helpful to focus on the structure of algebraic 

representations and, when solving problems, to assist students in choosing 

deliberately from alternative algebraic strategies. In particular, worked examples can 

help learners to appreciate algebraic reasoning and different solution approaches. 
 

Strength of evidence: MEDIUM 
 

For the purposes of this review, we define algebra as a powerful set of mathematical 
tools used to express generalisations and relationships between numbers, 
expressions, functions and other mathematical objects, using symbols, graphs, 
numbers and words (see, e.g., Kieran, 2004). There is a great deal of evidence that 
learners encounter significant difficulties with algebra (Hart, 1984; Hodgen et al., 
2012). In common with many researchers, Rakes et al. (2010) argue that this is due 
to a predominance of drill and practice approaches to teaching that do not facilitate 
algebraic understanding. They highlight three conceptual challenges in the learning 
of algebra:  

The abstract nature of algebra: In the transition to algebraic thinking, 
learners are required to think more abstractly; for example, by making 
generalisations about expressions or equations using rules and logical 
relations (Nunes et al., 2009). This can require learners to process many 
pieces of complex information at the same time, thus increasing cognitive load 
(Star et al., 2015).  

The meaning of algebraic symbols: In algebra, letters are used to represent 
unknown numbers, variables, parameters and constants. There is an 
extensive literature on learnersô difficulties and misconceptions regarding the 
interpretation of letters, which can prevent learners from connecting the 
symbols to their meanings (Küchemann, 1981; Nunes et al., 2009).  
The structural characteristics of algebra: Algebra involves the study of 
structures and systems abstracted from number and relations (Kaput, 2008). 
Without an appreciation of this structure, learners often conceive of algebra as 
a collection of arbitrary rules and, for example, misapply or misremember 
rules for manipulating algebraic expressions or equations (Nunes at al., 
2009). 

 

By coding the literature, Rakes et al. (2010) identified five categories of approaches to 

the teaching of algebra that they judge to be distinct from drill and practice. The five 

categories were: interventions focused on changes to teaching (including both 

cooperative learning and mastery approaches), concrete manipulatives, non- 
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technology-based curricula,9 technology tools (both software and calculators), and 

technology-based curricula (mainly computer-aided instruction of various types). In 
each case, the categorisation was deliberately broad in order to include, and thus 
compare, the effects of both procedurally and conceptually based approaches. 
Rakes et al. (2010) found some evidence to support the efficacy of all five 
approaches. In addition, they found positive effects for both procedurally and 
conceptually-focused approaches. Whilst this indicates that it is valuable to use 
procedural and conceptual teaching approaches, it provides limited actionable 
guidance for teachers on what specific approaches to use, as well as when and how 
to integrate them. 
 

Haasôs (2005) meta-analysis identified from the literature six approaches to teaching 

algebra: cooperative learning, communication and study skills, explicit teaching,10 

problem-based learning, technology-aided learning, and manipulatives, models and 
multiple representations. He finds medium-sized effects for direct instruction and 
problem-based learning (d=0.55 and d=0.52, respectively), smaller effects for 
manipulatives and cooperative learning (d=0.38 and d=0.34, respectively) and near 
negligible (but positive) effects for communication and technology-based 
approaches. Haas argued that these findings do not imply that teachers should 
avoid using communication and study skills approaches or technology (or 
manipulatives and cooperative learning), but rather he observed that both explicit 
teaching and problem-based learning can encompass each of these approaches, 
each of which ñrepresents less an overarching approach to teaching and more a tool 
to be incorporated within a lesson [and] teachers should possess a wide repertoire 
of such tools and strategiesò (p. 40). 
 

Elsewhere in this review, we provide evidence for the efficacy of explicit teaching 
as an approach and, specifically for teaching algebra; Hass argues strongly on the 
basis of his review for greater use of explicit teaching. It is important to note that 
Hass argues that explicit teaching should not be the only approach that teachers 
adopt, and that teachers need to adapt their approach to changes in the teaching 
and learning situation so that learners perceive learning as ñmeaningful and 
significantò (p. 38). Thus, assessment plays a key role not only in understanding 
what students know, but also in informing teacher judgments about the most 
appropriate teaching approaches to address the next steps in learning. However, 
whilst Haasôs meta-analysis provides evidence to warrant greater use of explicit 
teaching, it does not provide specific guidance on what practitioners should do. 
 

In a What Works Clearinghouse practitioner guide on the teaching of algebra, Star et 
al. (2015) highlight three evidence-based approaches that provide useful guidance 
for explicit teaching in algebra, and which place emphasis on both procedural and 
conceptual understanding:  

Use worked examples to enable learners to analyse algebraic reasoning 
and strategies: Worked examples, or ósolved problemsô, enable learners to see  

 
 

 
9 In effect, Rakes et al.ôs (2010) non-technology curricula consist of textbook schemes that are commonly used 
in the US. They include both traditional and reform-based schemes in this category.  

10 Haas (2005) used the term direct instruction, which we have categorised in more general terms as explicit 
instruction. He defined direct instruction as follows: ñEstablishing a direction and rationale for learning by 
relating new concepts to previous learning, leading students through a specified sequence of instructions based 
on predetermined steps that introduce and reinforce a concept, and providing students with practice and 
feedback relative to how well they are doing.ò (p. 28). 
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the problem and the solution together. By removing the need to carry out each 
step in a solution, worked examples reduce cognitive load, thus enabling 
learners to discuss and analyse the reasoning and strategies involved. Worked 
examples may be complete, incomplete or incorrect, deliberately containing 
common errors and misconceptions for learners to uncover.  
Teach learners to recognise and use the structure of algebraic 
representations: An explicit focus on structure can help learners to ñmake 
connections among problems, solution strategies, and representations that may 
initially appear different but are actually mathematically similarò (Star et al., 2015, 
p. 16). Teaching should encourage learners to use language that reflects 
algebraic structure and to notice that different mathematical representations 
(e.g., symbolic, numeric, verbal or graphical) can communicate, or place different 
emphasis on, different characteristics of algebraic expressions, equations, 
relationships or functions. Nunes et al. (2009) recommend that learners ñread 
numerical and algebraic expressions relationally, rather than as instructions to 
calculate (as in substitution)ò (p.?); the same is also necessary with regard to the 
equals sign (Jones & Pratt, 2012).  

Teach learners to intentionally choose from alternative algebraic 
strategies when solving problems: Choosing, comparing and evaluating 
different strategies can develop learnersô procedural fluency and conceptual 
understanding. Encouraging learners to compare strategies can enable them to 
build on their existing knowledge. Teaching should encourage learners to 
articulate, and justify, the reasoning underlying different strategies. 

 

Whilst Star et al. (2015) consider all three approaches to be evidence-based, they 
judge the evidence to be stronger for alternative strategies (moderate evidence) than 
for worked examples and algebraic structure (limited strength). Additionally, the three 
approaches resonate with many of the findings of Nunes et al.ôs (2009) review. 
 

One further meta-analysis examined approaches to algebra teaching for students with 

learning disabilities (or at risk of developing learning disabilities). Hughes et al.  
(2014) identified two potentially effective approaches, each with limited evidence: 
cognitive/model-based approaches using explicit instruction to teach problem-
solving strategies, and concrete-pictorial-abstract approaches. 
 

Evidence base 
 

We found three meta-analyses examining the effect of teaching approaches in 
algebra, one of which is focused on learners with learning disabilities. There is a 
great deal of overlap between the two remaining meta-analyses. The largest and 
most recent of these (Rakes et al., 2010) is of high quality and draws on a larger 
number of original studies.  

Meta- Focus k Quality Date Overlap with 
analysis    Range Rakes et al. 

Rakes et al. Teaching methods in 82 3 1968- N/A 
(2010) algebra (mainly   2008  

 secondary).     

Haas Teaching methods in 26 2 1980- 20 (76.9%) 
(2005) secondary algebra   2002  
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Hughes et Teaching methods in 12 2 1985- 1 (8.3%) 
al. (2014) algebra for learners   2002  

 with disabilities &     

 struggling learners (at     

 risk for a     

 mathematics     

 disability).     

Directness      
 

Our overall judgement is that the available evidence is of high directness. 
 

The majority of the studies examined in these meta-analyses are set in the US and 
inevitably the studies were designed around the particularities of the US school 
system, in which learners have an entire year of mathematics labelled as ñAlgebraò. 
However, the problems that students encounter in algebra in the US and English 
systems are very similar (Kieran, 1992; Küchemann, 1981; Nunes et al., 2009). 
Moreover, the two main meta-analyses (Rakes et al., 2010; Haas, 2005) focus on 
general approaches that we judge to be largely applicable in both systems. The 
WWC Practice Guide (Star et al., 2015) is judged to highlight approaches that 
would be applicable in the English context, because similar approaches are 
highlighted in Nunes et al.ôs (2015) review.  

Threat to directness  Grade Notes 

Where and when the  3  Most original studies were US based, but 
studies were carried    results judged to be applicable to England. 
out        

How the intervention  3  The meta-analyses focus on generic 
was defined and    approaches (e.g., direct instruction, use of 
operationalised    multiple representations) rather than highly- 

      structured interventions 

Any reasons for  3  Not specifically. The meta-analysis (Hughes 
possible ES inflation    et al., 2015) related to the LD population was 

      taken out of the main analysis. 

Any focus on  3  NA 
particular topic areas      

Age of participants  3  Mainly secondary, but some upper 
      secondary and college level in Rakes et al. 
      (2010).  

Overview of effects      

Meta- Effect  No of  Comment  

analysis Size  studies    

 (d)   (k)    

Effect of different teaching approaches on attainment in algebra  

Rakes et 0.21 ï  82  Instructional change (including both  

al (2010) 0.32     cooperative learning and mastery  

      approaches): 0.32 (SE 0.030)  
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  Concrete manipulatives: 0.32 (SE 0.89) 

   Curricula (US textbook schemes): 0.21 (SE 
   0.024) 

   Technology tools (both software and 
   calculators): 0.30 (SE 0.046) 

   Technology-based curricula (e.g. computer- 
   aided instruction): 0.31 (SE 0.050) 

   Bayes effects reported. Rakes et al. also 
   calculate ñdesign effect adjusted random 
   effectsò. 

Haas 0.55 ï 22 Cooperative learning: 0.34 
(2005) 0.07  

Communication and study skills: 0.07    

   Direct instruction (explicit teaching):  0.55 

   Problem-based learning: 0.52 

   Technology-aided learning: 0.07 

   Manipulatives, models & multiple 
   representations: 0.38 
 

Comparison of procedurally and conceptually focused approaches to 
teaching algebra  

Rakes et See 82  Rakes et al. report two approaches to the  

al. (2010) com-   calculation of ESs: Bayes adjusted fixed  

 ment   effects and design effect adjusted random  

    effects. These result in different relative  

    magnitudes for procedural and conceptual  

    approaches & Rakes et al. argue that this  

    demonstrates the potential greater efficacy of  
    conceptually-based approaches.  

     Bayes Design  

      effect  

      adjusted  

    Concept 0.232 (SE 0.467 (SE  

     0.023) 0.099)  

    Procedur 0.301 (SE 0.214 (SE  

    e 0.023) 0.044)  
 

Effect of teaching approaches on attainment in algebra for learners 
with learning disabilities or struggling learners at risk of developing 
learning disabilities  

Hughes et 0.62, 8 Cognitive/model-based approaches using 
al. (2015) 95%  explicit instruction to teach problem-solving 

 CI  strategies: 0.68, 95% CI [0.48, 0.88], k=4 
 [0.48,   

 0.76]   
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    Concrete-pictorial-abstract11 approaches: 

    0.52, 95% CI [0.28, 0.76], k=2 

    Insufficient information or too few original 
    studies to calculate aggregated ESs for the 
    effects of co-teaching, graphic organisers, 
    single-sex instruction and technology. 

Effective techniques to teaching algebra 

Star et al. (2015) (WWC  Uses What Work Clearinghouse standards 
Practice Guidance)   

Worked   4 Minimal evidence base 
examples     

Algebraic   6 Minimal evidence base 
structure     

Alternative   10 Moderate evidence base 
strategies     
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8.3 Number and calculation 
 

What is the evidence regarding the effectiveness of teaching approaches to 
improve learnersô understanding of number and calculation? 
 

Number and numeric relations are central to mathematics. Teaching should enable 

learners to develop a range of mental and other calculation methods. Quick and 

efficient retrieval of number facts is important to future success in mathematics. 

Fluent recall of procedures is important, but teaching should also help learners 

understand how the procedures work and when they are useful. Direct, or explicit, 

teaching can help learners struggling with number and calculation. Learners should 

be taught that fractions and decimals are numbers and that they extend the number 

system beyond whole numbers. Number lines should be used as a central 

representational tool in teaching number, calculation and multiplicative reasoning 

across Key Stages 2 and 3. 
 

Strength of evidence: MEDIUM 
 

Findings 
 

Our literature search found eight meta-analyses specifically addressing number 
and calculation, together with a US-focused What Works Clearinghouse practitioner 
guide on the teaching of fractions. Four of the eight meta-analyses were concerned 
with calculator use and the other four addressed the teaching and learning of 
children and young people with learning disabilities. We found no meta-analyses 
specifically addressing the teaching of multiplicative reasoning, number sense, 
estimation, or general teaching of calculation. Given the importance of these areas 
and quantitative reasoning (e.g., Hodgen & Marks, 2013), it is surprising that the 
evidence base relating to the teaching of number is so limited. 
 

There is a great deal of research about how children learn number and calculation in 
general (Fuson, 1992) and specific to the development of number sense (Sowder, 
1992), additive reasoning (e.g., Nunes et al., 2009), multiplicative reasoning (e.g., 
Behr, et al., 1992; Lamon, 2007), the relationship between number and algebra (e.g., 
Nunes et al., 2009) and learnersô common errors and misconceptions (e.g., Hart, 
1981; Ryan & Williams, 2009). A number of implications for teaching arise from this 
research base. For example, Nunes et al. (2009) indicate that teaching should 
enable learners to understand the inverse relation between addition and subtraction, 
to develop multiplicative reasoning alongside additive reasoning, to use their 
understanding of division situations to understand equivalence and order of fractions, 
and to understand the equals sign as meaning óequal toô or óequivalent toô rather than 
as an instruction to evaluate something. However, enacting such principles is not 
straightforward. Specifically, evidence on what teaching approaches and 
interventions teachers can use (or on what other outcomes should be given a lower 
priority in order to achieve these learning outcomes) is weak. 
 

Developing calculation and fluency with number 
 

It is instructive to consider the research base on calculator use, which we 
summarised in a separate module (see Calculator module). The meta-analyses are 
based on an extensive set of original studies. Broadly, this research indicates that 
calculators can be a useful pedagogic tool if integrated into the teaching of 
calculation more generally, and specifically the teaching of mental methods. Hence, 
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taken together with the additional evidence cited in the Calculator module, 
this suggests the following recommendation:  

Teach learners to use a range of mental and other calculation methods. Help 
learners to regulate their use of calculators to complement mental methods. 

 

However, calculators are a tool and, whilst important, form only one element of an 
integrated approach to the teaching of calculation. The four meta-analyses on 
calculators provide only limited guidance on the specifics of such an integrated 
approach to the teaching of calculation. Indeed, much of what constitutes óbest 
practiceô in the teaching of calculation is based largely on inferences from research 
on how learners learn, rather than on specific evidence on teaching approaches. 
 

So, for example, Thompson (2001) criticises the teaching approach described in the 
National Numeracy Strategyôs Framework for Teaching Mathematics (DfEE, 1999) 
as follows: 
 

The Framework also describes a clear teaching progression for calculation, 
starting from mental methods, passing through jottings, informal written 
methods, formal algorithms using expanded notation, and culminating in the 
learning of standard algorithms. Research is urgently needed to ascertain the 
extent to which this seemingly logical progression is pedagogically sound. (p. 
18) 

 

We note that our literature search was largely focused on identifying meta-analyses, 
and it may be that a sufficiently large set of rigorously designed studies does in fact 
exist, but has yet to be synthesised. Hence, there is an urgent need to conduct a 
review of this literature to ascertain whether a meta-analysis is possible and to 
establish what additional research is needed in order to understand how to teach 

calculation.12 
 
Supporting learners struggling with number and calculation 
 

We identified one relevant meta-analysis (Kroesbergen & Van Luit, 2003), focused 
on students with special educational needs, and we additionally draw on a US-
focused What Works Clearinghouse (WWC) practitioner guide on the teaching of 
students struggling with mathematics. 
 

Kroesbergen & Van Luit (2003) synthesised 58 studies reporting interventions 
targeted at low-performing students, students with learning difficulties and those with 
ñmild mental retardationò. Most studies were focused on basic facts (d=1.14, k=31, 
N=1324) as opposed to preparatory arithmetic (d=.92, k=13, N=664) and problem 
solving (d=.63, k=17, N=521). Separate meta-analyses were conducted for each of 
these and the effect sizes were found to be heterogeneous in each case. For basic 
facts, the variance was explained by study design, peer-tutoring (which was found to 
be less effective than not), age (interventions for older students were more effective) 
and instruction method (direct instruction [DI] more effective than self-instruction or 
mediated instruction). Overall, self-instruction (d=1.45) produced a larger ES than DI 
(d=.94) or mediated instruction (d=.34). In other words, self-instruction, providing a 
set of verbal prompts, is more effective in general than DI, but DI appears to be 
more effective for learning basic facts (at least for students with SEN). The authors  
 

 
12 We note that a systematic review of interventions in primary mathematics is currently being 
conducted by Victoria Sims, Camilla Gilmore and Seaneen Sloane and is due to report in 2018: 
http://www.nuffieldfoundation.org/review-interventions-improve-primary-school-maths-achievement 
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compared instruction by teacher (d=1.05) and by computer (d=.51), arguing that, 
whilst a computer can be very helpful, it cannot replace instruction by a teacher. 
 

Gersten, Beckman et al.ôs (2009) What Works Clearinghouse (WWC) practitioner 
guide focuses on ñassisting students struggling with mathematicsé [in] elementary 
and middle schoolsò. Four of the eight recommendations are particularly relevant to 

the teaching of calculation.13 The focus of these recommendations is on 
interventions; however, we consider these recommendations to be relevant to 
many learners: 
 

Teaching during the intervention should be explicit and systematic. The 
guidance highlights the effectiveness of ñdirect, teacher-guided, explicit 
instructionò (see also, NMAP, 2008), which they recommend should include 
both ñeasy and hardò problems, guided practice, and specific feedback. 
Teachers should make their approach explicit by thinking aloud when modelling 
strategies and methods.  
Provide learners with opportunities to solve word problems with similar 
mathematical structures. The guidance highlights the value of using well-
chosen problems to ñgive meaning to mathematical operations such as 
subtraction or multiplicationò (p. 26) by using representations such as the bar 
model.  
Help learners to use visual representations of mathematical ideas. 
(See manipulatives and representations module).  
Provide dedicated time of ñabout 10 minutesò during each intervention 
session to build fluent retrieval of arithmetic facts. The guidance highlights 
the importance of providing learners with regular, structured opportunities to 
practise ideas previously covered in depth, and emphasises the importance of 
derived facts. 

 

Fractions, decimals and proportional reasoning 
 

As already noted, we did identify a What Works Clearinghouse (WWC) practitioner 

guide on ñeffective fractions instruction for kindergarten through 8th gradeò (Siegler 

et al., 2010). Aside from the WWC guidance referred to above on helping students 
struggling with mathematics (Gersten, Beckman et al., 2009), this is one of only 
three WWC guides that focus on the specifics of teaching particular mathematical 
topics, and we refer to the other WWC practitioner guides in the module on algebra 
and the module on problem-solving. The title of this guidance reflects the importance 
accorded to fractions within the US curriculum, although the focus on fractions in the 
title of this one is somewhat misleading. Siegler et al. emphasise links between 
fractions and proportional reasoning more generally, and fractions is taken here to 
include decimals, as well as how fractions may be used to express multiplicative 
relations, including percentages and the relationship between division and fractions 
(Nunes et al., 2009).  
 
 
 
 
 
 

 
13 Gersten, Beckman et al.ôs (2009) remaining recommendations cover screening to assess the need for 
intervention, the focus of interventions (whole numbers for KS2, and rational numbers for KS2 and 3), monitoring 
progress and including motivational strategies. Screening is judged to be supported by a moderate level of 
evidence, whilst the other three are judged to be supported by a low level of evidence. 
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Four of Siegler et al.ôs five recommendations apply to teaching approaches and are 

framed in ways that are actionable in the classroom.14 Reflecting the narrow focus 
of the title, the recommendations refer almost exclusively to fractions, and we have 
consequently reworded these to better frame them for the context of school 
mathematics in England.  
1. Build on learnersô informal understanding of sharing and proportionality 

to develop early fraction and division concepts.  
2. Teach learners that fractions and decimals are numbers and that they expand 

the number system beyond whole numbers. Use number lines as a central 
representational tool in teaching number, calculation and multiplicative reasoning 

across Key Stages 2 and 3.15  
3. Teach learners to understand procedures for computations with fractions, 

decimals and percentages.  
4. Develop learnersô conceptual understanding of strategies for solving ratio, rate, 

and proportion problems before exposing them to cross-multiplication as a 
procedure to solve such problems. 

 

Whilst Seigler et al. (2010) consider all four approaches to be evidence-based, 
they judge the evidence base to be stronger for their recommendations similar to 
our 2 and 3 (moderate evidence) than for their recommendations similar to our 1 
and 4 (limited strength). Additionally, the four approaches resonate very strongly 
with the findings of Nunes et al.ôs (2009) review. 
 

Evidence base 
 

As discussed above, the evidence base is very limited. See Calculator module 
for quality judgments, effects sizes and other details of the meta-analyses 
concerned with calculator use. 
 

Directness 
 

Our overall judgement is that the available evidence is of high directness, although 
the evidence base is patchy and limited. 
 

Despite differences in the US and English curricula, the WWC Practice Guide 
(Siegler et al., 2010) is judged to highlight approaches that would be applicable 
in the English context, because similar approaches are highlighted in Nunes et 
al.ôs (2015) review.  

Threat to directness Grade Notes 

Where and when the 3 Most original studies were US based, which 
studies were carried  places greater emphasis on fractions than is 
out  the case in England. Nevertheless, results 

  judged to be applicable to England. There 
  are very few original studies. 
 
 
 
 
 

 
14 The fifth recommendation addresses the professional development of teachers: Professional development 
programs should place a high priority on improving teachersô understanding of fractions and of how to teach 
them.  

15 The Singapore bar method used in many schools in England is a valuable and pedagogically useful form of 
the number line that is relatively concrete (see Ng & Lee, 2009, for a discussion). It is valuable to help learners to 
build on such models to develop more general number line representations. 
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How the intervention  3  The practitioner guidance focuses on generic 
was defined and    approaches (e.g., direct instruction, use of 
operationalised    multiple representations) rather than highly- 

       structured interventions   

Any reasons for  -  No effect sizes reported.   

possible ES inflation          

Any focus on    3  Focused on fractions   

particular topic areas          

Age of participants  3        

Overview of effects          

Meta-  Effect  No of  Qualit Comment   

analysis  Size  studies  y      

  (d)   (k)        

Effect of interventions for students struggling with mathematics  

Kroesberg  1.14  58  2 Basic facts (d=1.14, k=31,  

en & Van  (basic      N=1324)   

Luit  facts)      
Preparatory arithmetic (d=.92, 

 

(2003) 
        

       k=13, N=664)   
          

        Problem solving (d=.63, k=17,  

        N=521).   

         

Systematic review      No of  Comment 
         studies    

         (k)    

Assisting students struggling with      

mathematics            

Gersten et al. (2009). (WWC Practice    Uses What Work 
Guidance)          Clearinghouse 

           standards 

1. Screen all students to identify those at risk N/A  Moderate evidence 
for potential mathematics difficulties and      

provide interventions to students identified as     

at risk.            

2. Instructional materials for students  3  Low evidence 
receiving interventions should focus intensely     

on in-depth treatment of whole numbers in     

kindergarten through grade 5 and on rational     

numbers in grades 4 through 8. These      

materials should be selected by committee.     

3. Instruction during the intervention should 6  Strong evidence 
be explicit and systematic. This includes      

providing models of proficient problem      
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solving, verbalization of thought processes,    

guided practice, corrective feedback, and    

frequent cumulative review.    

4. Interventions should include instruction on  9 Strong evidence 
solving word problems that is based on    

common underlying structures.    

5. Intervention materials should include  13 Moderate evidence 
opportunities for students to work with visual    

representations of mathematical ideas and    

interventionists should be proficient in the    

use of visual representations of mathematical    

ideas.    

6. Interventions at all grade levels should  7 Moderate evidence 
devote about 10 minutes in each session to    

building fluent retrieval of basic arithmetic    

facts.    

7. Monitor the progress of students receiving  N/A Low evidence 
supplemental instruction and other students    

who are at risk.    

8. Include motivational strategies in [é]  2 Low evidence 
interventions.    

Fractions, decimals and proportional reasoning   

Siegler et al. (2010). Developing effective   Uses What Work 
fractions instruction for kindergarten through   Clearinghouse 
8th grade. (WWC Practice Guidance)   standards 

Build on studentsô informal understanding of  9 Minimal evidence 
sharing and proportionality to develop initial   base 
fraction concepts    

Help students recognise that fractions are  9 Moderate evidence 
numbers and that they expand the number   base 
system beyond whole numbers. Use number    

lines as a central representational tool in    

teaching this and other fraction concepts    

from the early grades onward    

Help students understand why procedures for  7 Moderate evidence 
computations with fractions make sense.   base 

Develop studentsô conceptual understanding  6 Minimal evidence 
of strategies for solving ratio, rate, and   base 
proportion problems before exposing them to    

cross-multiplication as a procedure to use to    

solve such problems.    

Professional development programs should  4 Minimal evidence 
place a high priority on improving teachersô   base  
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understanding of fractions and of how to 
teach them. 
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8.4 Geometry 
 

What is the evidence regarding the effectiveness of teaching approaches to 
improve learnersô understanding of geometry and measures? 
 

There are few studies that examine the effects of teaching interventions for and 

pedagogic approaches to the teaching of geometry. However, the research evidence 

suggests that representations and manipulatives play an important role in the 

learning of geometry. Teaching should focus on conceptual as well as procedural 

knowledge of measurement. Learners experience particular difficulties with area, and 

need to understand the multiplicative relations underlying area. 
 

Strength of evidence: LOW 
 

Findings 
 

Geometry, measurement and spatial reasoning are important aspects of 
mathematics. In school geometry and measurement, students learn about the 
properties of points, lines, curves, surfaces and solids. Spatial reasoning is broader 
and includes things like the spatial orientation needed for everyday navigation as 
well as spatial visualisation, such as mental rotation. 
 

Clements & Battista (1992) identified very few studies that examined the effect on 

attainment of teaching interventions and pedagogic approaches aimed at improving the 

learning of geometry and spatial reasoning (see also Battista, 1992). They did, however, 

highlight the important role of diagrams, representations and manipulatives in the 

learning of geometry. They also documented a number of key misconceptions (see also 

Dickson et al., 1984). For example, some children think that a square is not a square 

unless its base is horizontal. This suggests that teachers need to consider varying the 

orientation when presenting diagrams and examples to learners. 
 

Clements & Battista (1992) highlight the promise of computers and technology to help 

develop geometric representations, but found little research investigating these effects. 

Battistaôs (2007) review, conducted 15 years later, documented a series of empirically-

based theoretical studies that examined teaching and learning using LOGO and 

dynamic geometry software (DGS). Chan and Leung (2014) found a substantial 

positive effect (d=1.02) associated with the use of DGS, although more research is 

needed before assuming that DGS will be transformative in the classroom (Battista, 

2007; Clements & Battista, 1992), particularly as the included studies were mostly 

small-scale and short-term (see also the Technology module). 
 

Bryantôs (2009) systematic review of the research on childrenôs learning of geometry 

and spatial reasoning indicated that, whilst learners enter school with a great deal of 

implicit knowledge about spatial relations, they then have to learn how to represent this 

knowledge in language and symbols, which presents difficulties. The review 

recommended that teaching should focus on the conceptual basis of measurement, 

rather than just the procedural aspects, a finding also emphasised in Battistaôs  
(1992) review. This includes emphasising transitive relations (i.e., if A < B and B < C, 
then A < C), and the idea of the iteration of standard units in measurement (e.g., 
tiling a rectangle with unit squares). Bryant (2009) makes clear links to the 
importance of the number line and the need to recognise that fractions and decimals 
expand the number system beyond whole numbers (see section on number). 
Learners encounter difficulties with area and need to understand the multiplicative 
relations underlying area. They will ñunderstand this multiplicative reasoning better 
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when they first think of it as the number of tiles in a row times the number of rows 
than when they try to use a base times height formulaò (p. 6) (see also Battista, 
2007). Learners should also be encouraged to consider conservation (and 
equivalence) of area when adding, subtracting, and rearranging components of 
shapes to work out areas. Teachers should be aware that learners experience 
confusion when considering linear and area enlargements, and may incorrectly think 
that doubling the perimeter of a square or rectangle also doubles its area. 
 

Evidence base 
 

We found only one meta-analysis examining teaching interventions and pedagogic 
approaches relating to geometry, which addresses the effects of using DGS on 
attainment (Chan & Leung, 2014). However, the effect size may be inflated, because 
studies were largely small-scale and of short duration, and there may also have been 
novelty effects. As a result, for this section, we have also synthesised findings from 
three research reviews (Battista, 2007; Bryant, 2009; Clements & Battista, 1992). 
 

Directness 
 

We judge the evidence regarding childrenôs learning reported above to be relevant 
to England, although much of the work has been carried out in the US. However, 
since there are a very few relevant intervention studies, the findings are judged to 
have weak directness.  

Threat to directness Grade  Notes  

Where and when the 1  Very few studies. 
studies were carried     

out       

How the intervention 1  Very few studies. 
was defined and     

operationalised       

Any reasons for 1  Possible novelty factor; many studies are 
possible ES inflation   small-scale. 

Any focus on   1  There is a pressing need for further research. 
particular topic areas   Bryant (2009), for example, highlights a need 

      for óbasicô research into various aspects of 
      childrenôs learning of geometry and spatial 
      relations. 

Age of participants 1  Very few studies. 

Overview of effects     

Meta-  Effec  No of  Qual- Comment 
analysis  t Size  studies  ity  

  (d)  (k)    

Chan &  1.02  9  2 Short-term instruction with DGS 
Leung  [0.56,     significantly improved the 
(2014):  1.48]     achievement of primary learners d = 

Dynamic 
      1.82 [1.38, 2.26], k =3. The effect 
      

size may be inflated, because 
Geometry       

       

Software        
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[2002-2012] 
   studies were largely small-scale and 
   

of short duration.     
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of Educational Computing Research, 51(3), 311-325. 

 

Systematic reviews included 
 

Battista, M. T. (2007). The development of geometric and spatial thinking. In F. K. J. 
Lester (Ed.), Second Handbook of Research on Mathematics Teaching and 
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8.5 Probability and Statistics 
 

What is the evidence regarding the effectiveness of teaching approaches to 
improve learnersô understanding of probability and statistics? 
 

There are very few studies that examine the effects of teaching interventions for and 

pedagogic approaches to the teaching of probability and statistics. However, there 

is research evidence on the difficulties that learners experience and the common 

misconceptions that they encounter, as well as the ways in which they learn more 

generally. This evidence suggests some pedagogic principles for the teaching of 

statistics. 
 

Strength of evidence: LOW 
 

Findings 
 

The reviews of research identified very few studies that examined the effect on 
attainment of teaching interventions and pedagogic approaches aimed at 
improving the learning of probability and statistics (Bryant & Nunes, 2012; Jones, 
Langrall & Monney, 2007; Shaughnessy, 1992, 2007). However, these research 
reviews do provide evidence on the difficulties that learners experience and the 
common misconceptions that they develop, as well as the ways in which they learn 
more generally. 
 

Bryant & Nunes (2012) identify four cognitively demanding aspects to the learning 
of probability: 
Understanding randomness  
Working out the sample space  
Comparing and quantifying probabilities  
Understanding associations (and non-associations) between events 
 

Drawing on his review of research, Shaughnessy (2007) outlines implications 
for teaching statistics: 
Build on studentsô intuitive notions of centre and variability  

Emphasise variation and variability as key concepts in statistics (alongside the 
concept of central tendency)  
Introduce comparison of data sets early in childrenôs education, prior to 
the introduction of formal statistics  
Help learners to understand the role of proportional reasoning in 
connecting populations and samples  

Highlight the importance of contextual issues in statistics 
 

Although these implications are not strongly supported by evidence from intervention 
studies or teaching experiments, they nevertheless appear reasonable and are 
generally in line with pedagogic recommendations outlined elsewhere in this review. 
 

Evidence base 
 

We found no meta-analyses examining teaching interventions and pedagogic 
approaches relating to probability and statistics. As a result, for this section we have 
also considered findings from four research reviews (Bryant & Nunes, 2012; Jones, 
Langrall, & Monney, 2007; Shaughnessy, 1992, 2007). 
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Directness 
 

We judge the evidence regarding childrenôs learning reported above to be relevant 
to England, although much of the work has been carried out in the US. However, 
since there are a very few relevant intervention studies, the findings are judged to 
have weak directness.  

Threat to directness Grade Notes 

Where and when the 1 Very few studies. 
studies were carried   

out   

How the intervention 1 Very few studies. 
was defined and   

operationalised   

Any reasons for 1 Very few studies. 
possible ES inflation   

Any focus on 1 There is a pressing need for further research. 
particular topic areas   

Age of participants 1 Very few studies. 
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9 Wider School-Level Strategies 
 

9.1 Grouping by attainment or óabilityô 
 

What is the evidence regarding óability groupingô16 on the teaching 
and learning of maths? 
 

Setting or streaming students into different classes for mathematics based on their 

prior attainment appears to have an overall neutral or slightly negative effect on their 

future attainment, although higher attainers may benefit slightly. The evidence 

suggests no difference for mathematics in comparison to other subjects. The use of 

within-class grouping at primary may have a positive effect, particularly for 

mathematics, but if used then setting needs to be flexible, with regular opportunities 

for group reassignment. 
 

Strength of evidence: MEDIUM 
 

Findings 
 

Grouping by óabilityô is a common organisational structure in both primary and 
secondary schooling. It may take a number of forms, sometimes used in 
combination (definitions taken from Marks, 2016, p. 4):  

Setting: children are placed into ability classes for particular subjects (e.g., all 
Year 8 pupils are grouped into different classes for mathematics); a child 
could be in different sets for different subjects.  
Streaming: children are placed in the same ability classes for all subjects 

based on general ability. This is often referred to as ótrackingô in the US.  
Within-class grouping: children are allocated to table groups within the class 
for all or some subjects, based on general ability or subject-specific ability.  
Mixed-ability: classes are not grouped by ability and in a multi-form 
entry school each class in a year-group should contain the same range 
of attainment. 

 

In the US, there are also specific grouping programmes involving cross-grade / 
vertical subject grouping. This is uncommon in England. 
 

There is a large research base concerning ability grouping and it continues to be a 

óhot topicô in mathematics education. This may be due to concerns over managing the 

wide range of attainment within year groups, although Brown et al. (1998, pp.  
371-2), in reviewing evidence related to the instigation of the National Numeracy 
Strategy, note that ñcountries that have the largest standard deviations are exactly 
those of the Pacific rim, like Japan and Korea, which teach unsetted classes on an 
undifferentiated curriculum.ò 
 

The literature base for ability grouping not only includes a number of primary studies 
but also an unusually large number of meta-analyses and research syntheses. 

These have now been further synthesised by two 2nd-order meta-analyses 
(syntheses of the meta-analyses). For the purpose of this module, we focus on these 

two 2nd-order analyses (Steenbergen-Hu et al., 2016; EEF, 2017), which bring  
 
 
 

 
16 We maintain the nomenclature of the majority of the literature, using the term óability-groupingô, although we 
recognise the contested nature of this term. 
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together 15 meta-analyses based on 172 primary studies (see evidence 
base below). 
 

The pooled effect for between-class grouping (setting and streaming) suggests 
an overall neutral or slightly negative effect on attainment. However, higher 
attainers may gain slightly from the practice. 
 

The evidence base for within-class grouping (usually seen in primary schools) is 
limited, but suggests positive effects for mathematics. Lou et al. (1996) found that 
the effects of within-class grouping for mathematics and science combined (d=0.20) 
and for reading and liberal arts (d=0.13) were significantly greater than for other 
subjects. These positive effects should be treated with a degree of caution, however; 
Slavin (1987) suggests that the positive effect may be a feature of the flexibility of 
such classroom organisation structures, which may allow learners to frequently move 
between groups in response to their changing needs, even though, in practice, such 
movement may be limited. 
 

Differentiated grouping may widen the attainment spread. The picture is more 
complicated, moderated by grouping type, attainment level, flexibility and subject, as 
can be seen in the EEF Toolkit and Steenbergen-Hu et al. (2016) discussions. 
 

Evidence base 
 

We base this module on two 2nd order analyses: Steenbergen-Hu et al. (2016) and 
the EEF Toolkit strand: setting or streaming. 
 

Steenbergen-Hu et al. (2016) draw on 13 meta-analyses in their second-order meta-
analysis, 11 of which reviewed the academic effects of between-class grouping. This 
analysis is deemed to be of high methodological quality, but is based on a synthesis 
of 13 meta-analyses that Steenbergen-Hu et al. judge to be either of medium or low 
quality. These meta-analyses are themselves based on the syntheses of studies, 
some of which contained methodological and reporting flaws (and, in particular, very 
few studies involved random assignment). Of these 13 meta-analyses, it was clear in 
only three (Slavin, 1987, 1993; Lou et al., 1996) that a subject-moderator analysis 
examining the specific impact of ability grouping in mathematics had been 
conducted. Slavin (1993) reports no differences for mathematics at the middle school 
level, while Slavinôs 1987 study suggests results that are inconclusive for setting just 
for mathematics in primary. Lou et al.ôs (1996) study combined mathematics with 
science and did not involve between-class grouping. It should be noted that it was 
not possible to determine how the moderator analysis had been conducted for 
Slavinôs studies. 
 

The 13 meta-analyses drew on 643 primary-studies, of which the authors found 172 
to be unique. Of these, we estimate that 20% (i.e. approximately 35 studies) are 
specifically related to mathematics, while mathematics is likely to form an element of 
the general studies, which form approximately 60% of this literature, although it is not 
possible to disaggregate the effects on different subjects for many of these studies. 
 

The EEF óSetting or Streamingô toolkit draws on six meta-analyses (in addition to a 
range of single studies and reviews). Four of these also appear in Steenbergen-Hu 
et al. (2016). The two not included are less applicable to our review: Gutierrez and 
Slavin (1992) examine cross-grade programmes, while Puzio and Colbyôs (2010) 
study examines reading and within-class grouping. 
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The effect sizes found in the 15 meta-analyses are shown in the table below. This is 
based on the data extracted by Steenbergen-Hu et al. (2016) for their 13 included 
meta-analyses and from the original papers for Gutierrez and Slavin (1992) and 
Puzio and Colby (2010). It should be noted that for the four common meta-analyses 
the reported effect sizes do not always correspond; this may be due to reporting for a 
particular sub-group.  

 Steen-     

 berg- EEF    

Meta-analysis en-Hu Too ES k Comments 
 et al. lkit    

 (2016)     

Goldring, E. B. (1990).   0.35 18 ES for gifted 
Assessing the status of     students 
information on classroom     overall 
organizational frameworks of      

gifted students. Journal of V     

Educational Research, 83, 313ï      

326.      

doi:10.1080/00220671.1990.10      

885977      

Henderson, N. D. (1989). A   -0.30 4 Overall ES 
meta-analysis of ability grouping 

     

  
0.02 2 High ability achievement and attitude in the   

     

elementary grades V  
ī0.00 2 Medium 

(Unpublished doctoral 
  

  014  ability 
dissertation). Mississippi State 

   

     

University, MS.      

Kulik, C. C. (1985, August).   0.09 78 Overall ES 
Effects of inter-class ability      

     

grouping on achievement and   0.12 Ò7 Medium- 
self-esteem. Paper presented at V   4 ability 
the 93rd annual convention of   

0.12 4 Low ability 
the American Psychological 

  

     

Association, Los Angeles, CA.      

Kulik, C. C., & Kulik, J. A.   0.10 51 Overall ES 
(1982). Effects of ability      

grouping on secondary school   0.02 33 Medium- 
students: A meta-analysis of 

  

    ability 
evaluation findings. American V V 

  

0.02 4 Low ability Educational Research Journal,   

19, 415ï428.      

doi:10.3102/000283120190034      

15      

Kulik, C. C., & Kulik, J. A. V V 0.19 28 Overall ES 
(1984). Effects of ability      
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 Steen-     

 berg- EEF    

Meta-analysis en-Hu Too ES k Comments 
 et al. lkit    

 (2016)     

grouping on elementary school   
0.02 19 Medium- 

pupils: A meta-analysis. Paper 
  

    ability 
presented at the annual 

    

     

meeting of the American      

Psychological Association,      

Toronto, Ontario, Canada.      

Kulik, J. A., & Kulik, C. C.   0.06 49 Overall ES 
(1987). Effects of ability   

0.12 40 High ability 
grouping on student 

  

  

0.04 33 Medium achievement. Equity & V  
Excellence in Education, 23(1ï     ability 

2), 22ï30.   
0.00 39 Low ability 

doi:10.1080/106656887023010 
  

     

5      

Kulik, J. A., & Kulik, C. C.   0.03 51 Overall ES 
(1992). Meta-analytic findings   

0.10 36 High ability 
on grouping programs. Gifted 

  

V 
 

-0.02 36 Medium Child Quarterly, 36, 73ï77. 
 

  

doi:10.1177/001698629203600     ability 

204   
-0.01 36 Low ability    

Lou, Y., Abrami, P. C., Spence,   0.17 51 Overall ES 
J. C., Poulsen, C., Chambers,     (N.B. for 
B., & dôApollonia, S. (1996).     within-class 
Within-class grouping: A meta-     grouping) 
analysis. Review of Educational   

0.27 Ò1 High ability 
Research, 66, 423ï458. 

  

   8 (N.B. for 
doi:10.3102/003465430660044 

   

    within-class 
23 

    

    grouping)      

 V V 0.18 Ò1 Medium 
    1 ability (N.B. 
     for within- 
     class 
     grouping) 

   0.36 Ò2 Low ability 
    4 (N.B. for 
     within-class 
     grouping) 

Mosteller, F., Light, R. J., & 
V 

 0.00 10 Overall ES 
Sachs, J. A. (1996). Sustained 

 

0.08 10 High ability 
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 Steen-     

 berg- EEF    

Meta-analysis en-Hu Too ES k Comments 
 et al. lkit    

 (2016)     

inquiry in education: Lessons   
-0.04 10 Medium 

from skill grouping and class 
  

    ability 
size. Harvard Educational 

    

  

-0.06 10 Low ability Review, 66, 797ï 842.   

doi:10.17763/haer.66.4.36m328      

762x21610x      

   
0.01 

Ò5 Overall ES 
   

0 
 

     

   
0.16 

Ò5 High ability 
   

0 
 

Noland, T. K. (1986). The 
V 

   
  

Ò5 Medium 
   

effects of ability grouping: A 
  

-0.45   
0 ability 

meta-analysis of research    

     

findings. Retrieved from   
0.18 

Ò5 Low ability 
http://eric.ed.gov/?id=ED269451 

  
0 

 

    

Slavin, R. E. (1987). Ability   -0.54 14  

grouping and student      

achievement in elementary      

schools: A best-evidence      

synthesis. Review of V     

Educational Research, 57, 293ï      

336.      

doi:10.3102/003465430570032      

93      

Slavin, R. E. (1990).   -0.03 29 Overall ES 
Achievement effects of ability 

     

  
-0.02 15 High ability grouping in secondary schools:   

     

A best-evidence synthesis. 
V V -0.07 15 Medium 

Review of Educational     ability 
Research, 60, 471ï499. 

    

  

-0.03 15 Low ability doi:10.3102/003465430600034   

71      

Slavin, R. E. (1993). Ability   -0.01 27 Overall ES 
grouping in the middle grades:   

0.01 14 High ability 
Achievement effects and 

  

V 
 

-0.07 14 Medium alternatives. Elementary School 
 

  

Journal, 93, 535ï552.     ability 

doi:10.1086/461739   
-0.02 14 Low ability    

Gutierrez, R., & Slavin, R. E.   0.46 9 Joplin like 
(1992). Achievement Effects of  V   non-graded 
the Non-graded Elementary     programs.  
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 Steen-     

 berg- EEF    

Meta-analysis en-Hu Too ES k Comments 
 et al. lkit    

 (2016)     

School: A Retrospective   
0.34 14 Non-graded 

Review. 
  

    Programs      

     Involving 
     Multiple 
     Subjects 
     (Comprehens 
     ive 
     Programs) 

Puzio, K., & Colby, G. (2010).   0.22 15 WithinȤclass 

The Effects of within Class     groupingΠ 
Grouping on Reading  V   interventions 
Achievement: A Meta-Analytic      

Synthesis. Society for Research      

on Educational Effectiveness.      

Directness      
 

The 15 meta-analyses were published between 1982 and 2010. Seven were 
published in the 1980s and seven in the 1990s. This suggests that the literature may 
be somewhat dated. 
 

The majority of the literature is based in the US. Although ability grouping systems 
do differ and have different labels, we judge that there are still enough similarities 
for this literature to be applicable to the context of England. Single studies in 
England tend to confirm the applicability of the results from the US literature.  

Threat to directness Grade Notes 

Where and when the 2 Most studies were carried out in the US; 
studies were carried  however studies in England tend to confirm 
out  the findings. 

How the intervention 2 Some differences in terms used. 
was defined and   

operationalised   

Any reasons for 2  

possible ES inflation   

Any focus on 3  

particular topic areas   

Age of participants 3  

Further research   
 

The largely neutral effects of ability grouping are surprising to many teachers and other 

professionals in education, and this is particularly so for mathematics. Given this, and 

the widespread use of ability grouping in school mathematics, it is important to better 

understand how teachers and schools should best group students so as to 
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address the needs of students at all attainment levels in mathematics. There is 
scope for further analysis and research, both in terms of impact and alternatives. In 
particular, we judge that there is a need to investigate the effects of different 
combinations of approaches to addressing the different needs of students at 
different levels of attainment. This is of particular importance in the light of the 
evidence on cooperative learning (see module). As Slavin (1993) observed, 
ñRevisiting individualized instruction or mastery learning in the context of untracking 
middle schools may be fruitful é combining individualization with cooperative 
learning has turned out to be an effective strategy in mathematics in the upper-
elementary grades and is likely to be useful in the middle grades as wellò (p. 547). 
There is also a need to better understand within-class grouping at the primary level, 
in addition to developing our understanding of the impacts of all forms of ability-
grouping on equity in the teaching and learning of mathematics.  

Overview of 2nd-order meta-analysis reported effects 

2nd-order meta-analysis Variable  Effect Size (d) 
    

 Within-class 0.19 Ò g Ò 0.30 
 grouping   

Steenbergen-Hu et al. Cross-grade subject 0.26  
(2016) grouping   

 Between class 0.04 Ò g Ò0.06 
 grouping   

EEF Toolkit Setting and -0.09 
 streaming (low-   

 attainers)   
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9.2 Homework 
 

What is the evidence regarding the effective use of homework in the teaching 
and learning of mathematics? 
 

The effect of homework appears to be low at the primary level and stronger at the 

secondary level, although the evidence base is weak. It seems to matter more that 

homework encourages students to actively engage in learning rather than simply 

learning by rote or finishing off classwork. In addition, the studentôs effort appears to 

be more important than the time spent or the quantity of work done. This would 

suggest that the teacher should aim to set homework that students find engaging 

and that encourages metacognitive activity. For primary students, homework seems 

not to be associated with improvements in attainment, but there could be other 

reasons for setting homework in primary, such as developing study skills or student 

engagement. Homework is more important for attainment as students get older. As 

with almost any intervention, teachers make a huge difference. It is likely that student 

effort will increase if teachers value studentsô homework and discuss it in class. 

However, it is not clear that spending an excessive amount of time marking 

homework is an effective use of teacher time. 
 

Strength of evidence: LOW 
 

Findings 
 

Homework involves a variety of tasks assigned by teachers for pupils to complete ï 
usually independently ï outside of school hours (Pattall et al., 2008). At the primary 
level, this often involves reading, and practising spellings and number facts, such as 
multiplication tables (Higgins et al., 2013). At secondary level, homework often 
includes preparation for upcoming lessons, completing work not finished in lessons, 
revision activities and extended projects. 
 

While it has been suggested that increasing the quantity of or challenge associated 
with homework may plausibly be a strategy for raising standards in primary 
mathematics (e.g., Brown et al., 1998), the current evidence ï as outlined in the EEF 
Toolkit ï suggests that the effect of homework on general academic achievement is 
low at the primary level and stronger, but with wide variation, at the secondary level 
(Higgins et al., 2013). However, the evidence is weak and not entirely consistent 
(see evidence base below). On the basis of six experimental studies ï of which only 
one was in mathematics ï Cooper et al. (2006) report an ES of 0.60. Paschal et al.ôs 
(1984) synthesis of a set of older experimental studies found higher effects for 
homework amongst primary students (Year 5 and Year 6) compared to secondary. 
On the other hand, Cooper et al.ôs (2006) meta-analysis of correlational studies 
found no effect for primary (r = -0.04), compared to a medium-sized effect for 
secondary (r = 0.25). This concurs with the findings of the Canadian Council on 
Learningôs (CCL, 2009) systematic review of the impact of homework on academic 
achievement, which again was not focused on mathematics. Based on 10 recent 
studies, the review found evidence that the use of homework increases achievement 
to a moderate degree (particularly with older pupils and lower-attainers). However, 
the evidence is varied and contains some contradictory findings. They argue that 
homework is a diverse activity, which has the potential to impact positively, or 
negatively, on attainment. Their findings also suggest that homework which 
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promotes óactive learningô (such as metacognition) rather than ñrote repetition 
of classroom materialò is more likely to increase attainment (p.44). 
 

Looking at mathematics specifically, the evidence is somewhat contradictory. In an 
analysis of a longitudinal US dataset, based on a cohort of approximately 25,000 
students in Grade 8 (Year 9) in 1988, Eren and Henderson (2011, p.960) found that 
mathematics was the only subject with a ñconsistently and statistically meaningful 
large effect on test scoresò, although both Paschal et al.ôs (1984) and Cooper et al.ôs 
meta-analyses found no significant differences between different school subjects. 
 

The Canadian Council on Learning (CCL, 2009) found that the quality of the 
homework task and the level of student engagement seemed to be more important 
than the amount of time a student spent on homework. For example, Trautwein 
(2007) reported on three studies with Grade 8 (Year 9) students in Germany, based 
on an analysis of the TIMSS 1995 and PISA 2000 data, and an associated 
longitudinal study. This analysis suggested that, for mathematics, effort put into 
homework, rather than the amount of time spent on it, was associated with 
attainment gains. 
 

There is also something to be understood about the effects of technology-based 
homework in mathematics, with Steenbergen-Hu and Cooperôs (2013) finding that 
intelligent tutoring systems (ITS) appear to be more effective than pencil-and-paper 
homework assignments in mathematics, although this was based on very limited 
evidence, and the overall effect of ITS was small. Interestingly, Eren and 
Henderson (2011, p. 960) found that ñthe teachersô treatment of the homework 
(whether it is being recorded and/or graded) does not appear to affect the returns to 
math homeworkò, although there is obvious caution to be advised in how this single-
study finding is implemented by practitioners. 
 

The evidence of the efficacy of after-school programmes is slightly stronger, and 
Crawfordôs (2011) meta-analysis reported an ES of d=0.42 for mathematics, based 
on a synthesis of 10 studies. However, moderator analysis suggested that any 
impact would be dependent on the design of the after-school programme. 
 

Evidence base 
 

We found very limited evidence regarding the use of homework in mathematics 
specifically. Given the limited evidence base, we have drawn on syntheses of 
correlational studies, together with some recent single studies, in order to 
supplement the meta-analyses and systematic reviews. We would advise caution in 
interpreting and applying findings drawn from these studies. 
 

We have included two meta-analyses considering the effect of homework on 
attainment, although these consider attainment in general rather than mathematics 
specifically. These meta-analyses contain only a small number of experimental 
studies in mathematics, and few of these are either robustly designed or have been 
conducted recently. Societal changes outside school are of particular relevance to 
homework, because it is possible that young people are less or more willing to 
engage in homework in the present day than they were 40 or 50 years ago. 
 

The findings draw heavily on correlational studies, which provide evidence of 
associations but not of causation. Hence, any positive effects associated 
with homework may be the result of other factors. 
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There is certainly a need for future research specifically examining the case of 
mathematics across both primary and secondary aged-pupils, providing guidance on 
the most effective uses of homework in mathematics and identifying the causal 
relationships between homework and mathematical attainment. However, as Cooper 
et al. (2006) indicate, such research will need to draw on a variety of research 
designs and methodologies, partly because of inherent difficulties in conducting 
robust experimental studies involving homework, including the difficulty of 
withholding from some students any intervention, such as homework, which is 
widely presumed to have benefits. 
 

Directness 
 

Within the limited evidence, it seems clear that homework is poorly understood and 
therefore detailed guidance is limited, although secondary students and low attainers 
seem likely to gain more. However, as the Canadian Council on Learning (CCL, 
2009) conclude, the evidence suggests that useful principles for teachers are to 
design homework that requires, or encourages, students to engage in active learning 
(rather than simple repetition of classroom material). Since student effort is more 
important than time spent on homework, it would seem beneficial to value effort and 
to set tasks that are likely to engage all students more.  

Threat to directness Grade Notes 

Where and when the 1 The studies drawn on in the meta-analyses 
studies were carried  are now fairly dated, and the educational / 
out  policy /societal context has changed. The 

  vast majority of the studies were located in 
  the US. 

Strengths and 1 Few of the studies had robust research 
weaknesses in the  designs. Cooper et al. (2006) highlight the 
research design  inherent difficulties in conducting 

  experimental studies involving homework, 
  which make identifying causal relationships 
  difficult. 

How the intervention 2 Homework as an intervention is poorly 
was defined and  defined. 
operationalised   

Any reasons for 2 Studies suggest a stronger effect for lower- 
possible ES inflation  attainers, but this is not accounted for in all 

  primary studies (and may be inflated by the 
  restricted attainment ranges in the samples). 
  A further source of bias may be that 
  homework interventions may be affected by 
  confounding factors, such as compliance and 
  other student behaviours. 

Any focus on 2 Relatively few intervention studies are 
particular topic areas  focused on mathematics. 

Age of participants 2 Limited research at the primary level. 
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Overview of effects 

Meta-analysis Effect No of Quality Comment 
 Size studies   

  (k)   

Effect of homework interventions on attainment  
     

Cooper et al. d = 0.60 6 3 Random effects model 
(2006): attainment [0.38, 0.82]   estimate for all 6 
in general    studies is reported (i.e. 

    all experimental 
    designs combined). 
    However, only one of 
    these 6 studies is in 
    mathematics (Y3). The 
    authors indicate that a 
    great deal of caution 
    should be exercised in 
    interpreting this 
    estimate, due to 
    limitations in the 
    number and 
    robustness of the 
    studies synthesised. 

Paschal et al. d = 0.23 60 ESs 1 The majority of effects 
(1984):  (based  considered were for 
mathematics  on <15  mathematics (60 
attainment  reports)  effects for 

    mathematics out of a 
    total of 81 effects, 
    taken from 15 reports). 
    The studies are now 
    dated (1964-1980) and 
    almost wholly 
    conducted in the US. 
    Studies were based on 
    experimental designs. 
    The 81 effects 
    synthesised include 9 
    attitudinal effects. It is 
    not clear whether 
    Paschal et al. have 
    taken dependencies 
    between effects into 
    account. 

Paschal et al. d = 0.36 81 1 The synthesis finds 
(1984): attainment  (based  significantly higher 
in general  on 15  effects for Y5 and Y6. 

  reports)   
 
 

152 



 

Effects based on correlations between homework and attainment 

Cooper et al. r = -0.04 10 3  

(2006): primary     

Cooper et al. r = 0.25 23 3  

(2006): secondary     
 

Effect of homework interventions using intelligent tutoring systems (ITS) 
compared to pencil and paper based homework  

Steenbergen-Hu g = 0.6 2 3 Two small studies are 
and Cooper (2013)    cited, both in primary, 

    with effects in favour of 
    ITS of g=0.61 and 
    0.61. 

Effect of after-school programmes on attainment  

Crawford (2011) d=0.42 10 2 ES for reading similar 
    to mathematics 
    (d=0.38). 
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9.3 Parental engagement 
 

What is the evidence regarding parental engagement and 
learning mathematics? 
 

The well-established association between parental involvement and a childôs 

academic success does not appear to apply to mathematics, and there is limited 

evidence on how parental involvement in mathematics might be made more 

effective. Interventions aimed at improving parental involvement in homework do not 

appear to raise attainment in mathematics, and may have a negative effect in 

secondary. However, there may be other reasons for encouraging parental 

involvement. Correlational studies suggest that parental involvement aimed at 

increasing academic socialization, or helping students see the value of education, 

may have a positive impact on achievement at secondary. 
 

Strength of evidence: LOW 
 

Findings 
 

The EEF (2017) toolkit states that ñThe association between parental involvement 
and a childôs academic success is well establishedò (EEF, 2017). However, Patall et 
al.ôs (2008) meta-analysis of correlational evidence suggests that this association 
does not appear to hold for mathematics. They found a significant negative 
association between parental involvement and achievement in mathematics (d 
=ī.19), compared to a significant positive association for reading (d = .20). They also 
found that association between parental involvement in homework and attainment 
was strong and positive for elementary-age pupils (d = .22) and strong and negative 
for middle-school students (d = ī.18). 
 

Patall et al. (2008) examined experimental studies looking at the impact on 
attainment of training parents to be involved in homework. Their findings are limited 
by the small number of studies (14, with 10 in mathematics), only some of which 
involved randomisation (9) or pre-tests (5). Their findings were mixed, with effects on 
attainment ranging from d = .00 to d = .22. Moderator analysis indicated that the 
effects were positive for elementary students and negative for middle school 
students, with no differences between mathematics and reading. Essentially, ñthe 
effect of training parents for homework involvement has at best a slightly positive 
overall impact on achievementò (Patall et al., 2008, p.1062). 
 

Pattall et al. suggest that the negative effects for middle school may be due to many 
parents lacking the skills, knowledge and confidence needed to provide subject-
specific support. Indeed, evidence from Brooks et al.ôs (2008) systematic review 
suggests that improving parentsô skills, knowledge and confidence is challenging, 
particularly in mathematics. 
 

Hill & Tysonôs synthesis of correlational effects found stronger association 
between general parental involvement and achievement in middle school, 
although the association was stronger for academic socialisation, or 
communicating the value of education (r = 0.39), than for home-based 
engagement, such as assisting with homework (r = 0.03). 
 

Evidence base 
 

As noted previously, while we identified two fairly recent meta-analyses, we draw 

predominantly on Patall et al. (2008), due to intervention overlap and methodological 
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